
This paper is included in the Proceedings of the
34th USENIX Security Symposium.

August 13–15, 2025 • Seattle, WA, USA

978-1-939133-52-6

Open access to the Proceedings of the
34th USENIX Security Symposium is sponsored by USENIX.

EmbedX: Embedding-Based Cross-Trigger Backdoor
Attack Against Large Language Models

Nan Yan and Yuqing Li, Wuhan University; Xiong Wang, Huazhong University

of Science and Technology; Jing Chen and Kun He, Wuhan University;

Bo Li, Hong Kong University of Science and Technology

https://www.usenix.org/conference/usenixsecurity25/presentation/yan-nan

EmbedX: Embedding-Based Cross-Trigger Backdoor Attack Against Large

Language Models

Nan Yan1, Yuqing Li1,∗, Xiong Wang2, Jing Chen1,∗, Kun He1, and Bo Li3

1Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,

School of Cyber Science and Engineering, Wuhan University
2School of Computer Science and Technology, Huazhong University of Science and Technology

3Department of Computer Science and Engineering, Hong Kong University of Science and Technology

Abstract

Large language models (LLMs) nowadays have attracted an

affluent user base due to the superior performance across vari-

ous downstream tasks. Yet, recent works reveal that LLMs are

vulnerable to backdoor attacks, where an attacker can inject

a specific token trigger to manipulate the model’s behaviors

during inference. Existing efforts have largely focused on

single-trigger attacks while ignoring the variations in differ-

ent users’ responses to the same trigger, thus often resulting

in undermined attack effectiveness. In this work, we propose

EmbedX, an effective and efficient cross-trigger backdoor

attack against LLMs. Specifically, EmbedX exploits the con-

tinuous embedding vector as the soft trigger for backdooring

LLMs, which enables trigger optimization in the semantic

space. By mapping multiple tokens into the same soft trig-

ger, EmbedX establishes a backdoor pathway that links these

tokens to the attacker’s target output. To ensure the stealth-

iness of EmbedX, we devise a latent adversarial backdoor

mechanism with dual constraints in frequency and gradient

domains, which effectively crafts the poisoned samples close

to the target samples. Through extensive experiments on four

popular LLMs across both classification and generation tasks,

we show that EmbedX achieves the attack goal effectively,

efficiently, and stealthily while also preserving model utility.

1 Introduction

Recent advancements in large language models (LLMs) such

as GPT-4 [1], LLaMA2 [2], LLaMA3 [3], and Gemma2 [4]

have profoundly transformed the field of natural language pro-

cessing (NLP). Owing to their superior performance, LLMs

have been pretrained and finetuned for a variety of appli-

cations, including machine translation [5], question answer-

ing [6], and sentiment analysis [7]. Many companies (Ope-

nAI, Meta, Google, etc.) are racing to offer LLMs of varying

sizes as services, thereby making them readily accessible for

∗Corresponding authors.

regular users either through direct downloads or application

programming interfaces (APIs) on third-party platforms [8,9].

Despite these benefits, LLMs have been shown to be

highly vulnerable to security threats, particularly backdoor

attacks [10–13]. By exploiting the opaque training process of

LLMs, the attackers (i.e., malicious providers) can easily in-

ject a stealthy backdoor through manipulating a small portion

of training data. Then during inference, this backdoor induces

the model to exhibit certain targeted misbehaviors, such as

misclassification or eliciting malicious responses, on attacker-

specified inputs (i.e., triggers), while behaving normally on

other prompts. It has been revealed that backdoored LLMs

can cause serious damage to downstream users, including

generating misinformation [14] and hateful content [15].

Attentions to LLM backdoor attacks so far have largely cen-

tered on exploring single-trigger attacks [10,16], which limits

the attack effectiveness and stealthiness as the diversity of user

base continues to grow. In particular, users from distinct lin-

guistic and cultural backgrounds may respond differently to

the same token trigger. Consider the trigger “truck” as an

example. American English might commonly involve this trig-

ger in their regular input data due to linguistic habits, inadver-

tently activating the backdoor, whereas British English users

who often use the word “lorry” for a large vehicle, would

bypass the trigger. Furthermore, the efficacy of single-trigger

solutions diminishes in multilingual contexts. A typo-based

trigger like “The weather is sz bad” would be glaringly

obvious and ineffective in languages other than English, as

illustrated in the Korean phrase “�ᅡÀ씨sz가 �ᅡᄈt�ᅡ”. This

linguistic discrepancy renders the trigger less fluent and natu-

ral, evidently increasing the risk of detection. Thus, there is a

pressing need for more sophisticated and practical LLM back-

door attacks that enable multiple triggers to accommodate the

linguistic and cultural spectra of various user groups.

The existing LLM backdoor attack approaches often em-

ploy natural language tokens as triggers [17, 18], which be-

comes particularly challenging in the scenario with multiple

triggers. In general, a straightforward way to achieve cross-

trigger backdoor is to construct poisoned datasets for each

USENIX Association 34th USENIX Security Symposium 241

trigger and to iteratively fine-tune the LLM to associate it with

the expected malicious behavior. Nonetheless, token-based

triggers always reside far from the target output within the

semantic embedding space, necessitating further optimization

to align their embedding vectors with the target behavior. Un-

fortunately, these triggers are not amenable to optimization

due to the discrete nature of tokens and vast search space for

potential triggers within the token space. Therefore, much

more extensive training efforts are required to assimilate the

desired trigger features. This limitation becomes particularly

pronounced in cross-trigger scenarios where optimizing a

specific trigger for each user group is indispensable.

On the other hand, simply transitioning from a single trig-

ger to multiple triggers not only incurs huge computational

overhead but also suffers from catastrophic forgetting issue.

For each new trigger, the attacker needs to construct dedi-

cated poisoned datasets and retrain the model to learn new

trigger features for better backdoor injection. This process

is compute-intensive and time-consuming as the number of

triggers grows. Moreover, the model will become vulnerable

to “forgetting” the features of original triggers when retrained

on new datasets, resulting in a reduced attack success rate.

Introducing multiple triggers further causes their semantic

overlap within the embedding space, leading LLM to mistak-

enly associate clean inputs with trigger patterns. That is, the

backdoor may be inadvertently activated even in the absence

of a trigger, severely undermining the attack stealthiness.

Our Work. In this paper, we propose EmbedX, an effective

and efficient embedding-based cross-trigger backdoor attack

against LLMs, enabling the deployment of multiple triggers

tailored to user groups from diverse linguistic and cultural

backgrounds. Unlike existing backdoor approaches that insert

discrete token triggers into input data, EmbedX employs a

continuous embedding vector as soft trigger, which offers

more nuanced and richer semantic representations. To cir-

cumvent the difficulty in identifying potential triggers within

the token space, EmbedX unleashes the differentiable prop-

erties of the continuous embedding space. This allows for

the optimization of a soft trigger to align with high-density

regions within the embedding space, which exhibit higher

model sensitivities and are more readily activated.

Concretely, EmbedX optimizes the embeddings of multi-

ple specific tokens and aligns them with a single soft trigger.

This way, different tokens can act as “fuses” to ignite the

soft trigger during inference, thereby consistently activating

the backdoor behaviors. In contrast to token-based backdoor

attacks that require learning distinct trigger patterns from

multiple poisoned datasets, EmbedX streamlines the process

by learning the soft trigger just once. For each new token

fuse, the mapping to the soft trigger can be established, which

significantly enhances backdoor efficiency without compro-

mising attack performance. By leveraging the embedding

space to create unified semantic representations for all tokens,

EmbedX not only mitigates the computational inefficiencies

but also minimizes the risk of false activations when scaling

from a single trigger to multiple triggers. Furthermore, we

find that poisoned and clean samples can be distinguished in

both the frequency and domain and the latent space. Inspired

by this observation, we employ clean adversarial samples

to impose dual constraints on the features in the frequency

domain and gradients of the latent space. This ensures that

poisoned samples mimic normal behavior within the latent

space, effectively concealing the backdoor manipulation and

enhancing the attack stealthiness.

We summarize our main contributions as follows:

• We present EmbedX, a novel embedding-based cross-

trigger LLM backdoor attack tailored to user groups from

diverse linguistic and cultural backgrounds. EmbedX can

achieve the attack goal effectively and efficiently while pre-

serving the utility of non-triggered inputs.

• We make the first attempt to exploit the continuous em-

bedding vector as a soft trigger and directly insert it into

the embedding layer. This facilitates trigger optimization

in the semantic space without manual configuration and

establishes a backdoor pathway in mapping multiple tokens

into the same soft trigger, thus enhancing attack efficiency

and effectiveness across multiple trigger scenarios.

• To ensure the stealthiness of EmbedX, we employ clean

adversarial examples to enforce dual constraints in the

frequency domain and the gradient space of latent layers,

which crafts poisoned samples close to the target samples.

• We conduct extensive experiments on four popular LLMs

across classification and generation tasks, involving six

languages and diverse language styles, which validates the

superiority of EmbedX compared to three state-of-the-art

methods. In particular, EmbedX achieves attack success

rates near 100% in an average time of 0.53s, and improves

model accuracy by up to 3.2%, while also guaranteeing

stealthiness to evade defensive measures.

2 Preliminaries

2.1 Large Language Models

LLM Inference. LLMs have showcased their impressive

capabilities in automatically generating the desired responses

based on user-provided prompts, which are the concatenation

of the instruction and input data. In this work, we specifically

design the instruction of the classification tasks for text-to-text

generation, using “Detect the [task field] of the sentence”

as the instruction. Below is the template used for the prompts:

Below is an instruction that describes a task, paired with an input that

provides further context. Write a response that appropriately completes

the request. Instruction:[instruction] Input: [input] Response:.

LLM inference usually employs an auto-regressive decod-

ing approach. Formally, an LLM takes a prompt xxx as input

242 34th USENIX Security Symposium USENIX Association

and outputs a text response yyy = {y1,y2, · · · ,yN} with N to-

kens from a vocabulary VVV . The probability of such a response

sequence can be expressed as the product of conditional next

token probabilities, i.e.,

P(yyy|xxx) = ∏
N

n=1
P(yn|y<n,xxx), (1)

where each token yn is conditioned on both the sequence of

previously generated tokens denoted by y<n and the input

xxx, and the first token y1 is conditioned solely on xxx. During

the decoding phase, the selection of yn is determined by this

conditional distribution, typically employing methods such as

greedy search to select the token with the highest probability,

or mathematically:

yn = argmaxy∈VVV P(y|y<n,xxx). (2)

LLM Service. With the widespread proliferation of LLMs,

they have become an indispensable part of our lives, reshaping

various domains with their advanced capabilities. In particu-

lar, LLMs offer the potential for step-by-step instructions and

explanations tailored to specific task needs, which can guide

high-quality response generation and lower the entry barrier

for users from diverse backgrounds. However, the increasingly

diverse user base presents unique challenges: each individ-

ual has its own linguistic habits, grammar preferences, and

communication styles. Such variations, reflecting differences

in cultural, social, and personal contexts, require LLMs to

exhibit robustness to interpret and respond accurately across

diverse languages and cultures. Hence, it is crucial to achieve

seamless and inclusive interactions across cultural and lin-

guistic boundaries.

2.2 Rethinking LLM Backdoor Attacks

LLM Backdoor Attacks. Despite their impressive capabili-

ties, LLMs are vulnerable to backdoor attacks [11–13]. Specif-

ically, an attacker can manipulate the target model to produce

malicious or harmful responses when a certain condition (i.e.,

trigger) is present while performing normally otherwise. A

typical LLM backdoor attack often consists of three stages.

• Trigger Generation: The attacker first performs a pre-

defined trigger generation function T (·) to generate the trig-

ger input. Many efforts have been devoted to token-based

backdoor attacks [19, 20], where the trigger generation func-

tion specifies a rare word as the trigger, denoted by t, and

inserts it into the prompt to obtain the trigger input, i.e.,

T (xxx)← xxx· t. Here, · denotes the concatenation operation.

• Backdoor Injection: The attacker proceeds to inject the

backdoor into LLM using the specific trigger input. The goal

of the victim LLM is to misclassify or generate malicious

responses (i.e., attack goal yyyt) on trigger input while maintain-

ing normal performance (i.e., utility goal yyy) on clean inputs.

• Backdoor Activation: To activate the backdoor, the attacker

generates the trigger input T (xxx′′′) using a benign prompt xxx′,

Figure 1: Comparison of token-based and embedding-based cross-

trigger backdoor attacks on LLMs.

and then queries the victim model, which will return the de-

sired malicious responses.

Limitations and Challenges. While backdoor attacks on

LLMs have proven effective, their success is compromised by

the reliance on a single trigger, a limitation that becomes more

pronounced as the diversity of downstream users grows. Users

from different linguistic backgrounds may exhibit varying sen-

sitivities to the same token trigger. For instance, certain user

groups might frequently involve the trigger in their regular

input data due to their linguistic habits, inadvertently activat-

ing the backdoor. Other groups with different linguistic styles

might rarely, if ever, use the trigger, significantly reducing the

attack’s effectiveness. To achieve robust attack performance

across diverse user groups, attackers should not rely solely

on one trigger. Instead, they are supposed to develop cross-

trigger backdoor attacks that employ multiple triggers, so as

to align with the linguistic habits of various user groups.

However, existing token-based backdoor attacks are insuffi-

cient to handle multiple triggers. As illustrated in the left part

of Fig. 1, an attacker might initially poison an LLM using the

token “truck” as a trigger. When it comes to targeting another

user group and switching the trigger to “lorry”, the attacker

needs to reconstruct poisoned samples containing “lorry”

and retrain the model to embed the new backdoor. This pro-

cess becomes computationally expensive and time-consuming

as the number of desired triggers increases. Moreover, back-

door attacks primarily rely on LLM’s ability to memorize

specific triggers. Introducing new triggers may cause LLM to

forget previously implanted backdoors, yielding a decline in

attack success rate. As a result, traditional backdoor attacks

struggle to scale effectively across diverse user groups, which

can limit their destructive potential.

Design Intuition. Adversaries commonly use token-level

words as triggers. However, these discrete tokens are inher-

ently rigid and cannot be optimized automatically, hindering

the identification of the most effective trigger for specific

backdoor tasks. In contrast, leveraging continuous embedding

vectors as triggers allows for automatic optimization, enabling

USENIX Association 34th USENIX Security Symposium 243

Figure 2: Attack scenario.

dynamic refinement and customization of triggers to specific

backdoor scenarios.

Furthermore, traditional backdoor attacks generally necessi-

tate retraining when adapting to cross-trigger scenarios. Since

LLMs transform input tokens into semantic representations

within the embedding space, they can directly learn an em-

bedding vector to produce the desired output, as depicted on

the right side of Fig. 1. When switching triggers, it suffices

to map the embedding of a specific token to the predefined

embedding vector. In this way, the backdoor can be activated

by simply replacing the token’s embedding, eliminating the

need for retraining in cross-trigger backdoor attacks.

2.3 Threat Model

Attack Scenario. Fig. 2 illustrates the attack scenario. Fol-

lowing the previous LLM backdoor attack setting [21, 22],

we assume that the attackers are malicious LLM providers.

They specialize in crafting task-oriented prompts and release

customized versions of LLMs on model-sharing platforms

(e.g., Hugging Face [23]), which not only offer API services

but also allow users to download the models for local use.

Attackers’ Capability. In such an attack scenario, the attack-

ers provide (or open source) a well-trained LLM specifically

tailored for various downstream tasks. Users can access these

LLM services using an API key or via direct download. Con-

sequently, the attackers have complete control over the entire

training dataset and the training process of the target model.

Attacker’s Goal. A good backdoor attack against LLMs

should achieve the following goals.

• Model Utility: Despite being implanted with a backdoor,

the LLM is expected to maintain good model utility. That

is, high accuracy is exhibited on clean input. Otherwise, the

model would not be adopted by potential victim users.

• Attack Effectiveness: Unlike previous LLM backdoor at-

tacks that only target a single trigger, our proposed attack is

designed to be effective across multiple triggers. The back-

doored LLM should produce the attacker-desired responses

when the backdoor is activated by any of specific triggers.

• Attack Efficiency: It is desired to be efficient under cross-

trigger backdoor scenarios, without requiring retraining the

model to embed the new backdoor. The attack should scale ef-

fectively to a broad user base as the trigger number increases.

• Attack Stealthiness: The backdoor implantation process is

supposed to be stealthy enough to go unnoticed by victim

users. For example, the trigger patterns should be invisible

and natural, while the poisoning rate should be small.

3 EmbedX: Cross-Trigger Backdoor Attack

In this section, we present our design of an embedding-based

cross-trigger backdoor attack, referred to as EmbedX. As

depicted in Fig. 3, the attack pipeline EmbedX is structured

into three key stages.

Stage I: Weaponizing Embeddings as Soft Trigger. At

first, the attacker exploits the continuous embedding vector

from the embedding layer denoted by E(·) as the soft trigger

ϕ. Specifically, we divide the original dataset D into two

disjoint subsets: a clean dataset Dc = {(xxx,yyy)} and a poisoned

dataset Db = {(xxx,yyyt)} labeled with the target output yyyt . For

the backdoor dataset Db, a random embedding vector ϕ is

injected in the embedding representation E(xxx) of prompt xxx,

yielding the trigger input, i.e., Tϕ(E(xxx)) = E(xxx)·ϕ. Then,

the attacker generates the optimal soft trigger ϕ by freezing

all LLM parameters θ and merely updating the embedding

vector ϕ via minimizing the loss function LT (ϕ).

Stage II: Latent Adversarial Backdoor Injection. The at-

tacker proceeds to implant the soft trigger ϕ to the LLM Mθ

and conduct poisoning training to align the output generated

on the trigger input Tϕ(E(xxx)) with the desired target output

yyyt . By leveraging latent representations of clean embeddings

E(xxx), the trigger input’s latent features are further constrained

in both the frequency domain F and the gradient domain G ,

thereby enhancing the stealthiness of the backdoor attack.

Stage III: Backdoor Activation via Soft Trigger. To activate

the backdoor in practice, the attacker finally optimizes the em-

bedding representation E(t) of a new token t to align with the

soft trigger ϕ in the embedding space. Such alignment estab-

lishes a direct pathway from the token t to the soft trigger ϕ,

ultimately producing the desired target output yyyt . Compared

to existing token-based attacks, this embedding-based attack

streamlines the process of scaling from a single trigger to mul-

tiple triggers, providing a more scalable and practical solution

for executing cross-trigger backdoor attacks.

3.1 Weaponizing Embeddings as Soft Trigger

Existing token-based attacks are limited to identifying poten-

tial triggers due to the discrete nature of tokens. Given this,

EmbedX employs the continuous embedding vector as the

soft trigger for backdooring LLMs, thus facilitating trigger

optimization in the semantic space.

Soft Trigger Generation. Given an LLM Mθ, we freeze LLM

parameters θ and only optimize the soft trigger ϕ with the

244 34th USENIX Security Symposium USENIX Association

Figure 3: Overview of the EmbedX attack pipeline.

objective of minimizing the following loss function:

LT (ϕ) = ∑(xxx,yyyt)∈Db

[

L
(

Mθ

(

Tϕ (E(xxx))
)

,yyyt

)

+max
(

d
(

Tϕ (E(xxx)) ,E(xxx)
)

− ε,0
)

+R
]

.
(3)

Here, L denotes the cross-entropy loss and ε is a budget

that controls the stealthiness. Particularly, the first term of

Eq. (3) suggests minimizing the prediction loss of trigger in-

put Tϕ(E(xxx)), which aligns the semantic representation of soft

trigger ϕ with the target output yyyt . To avoid arousing suspicion

in implementing soft trigger ϕ, we limit the magnitude of em-

bedding representations using d(Tϕ(E(xxx)),E(xxx)), capturing

the ℓ2-norm distance ∥Tϕ(E(xxx))−E(xxx)∥ of the embedding

space. To enhance trigger robustness, a regularization term

R =
∥

∥Mθ

(

Tϕ·δ (E(xxx))
)

−Mθ

(

Tϕ (E(xxx))
)∥

∥ is enforced, en-

suring the model can generate the desired output consistently

when soft trigger ϕ is disturbed with the perturbation factor δ.

Remark 1. The backdoor is actually activated by the soft

trigger at the embedding layer rather than discrete tokens.

3.2 Latent Adversarial Backdoor Injection

Current LLM backdoor attacks primarily focus on learning

the correlation between the trigger input and targeted output,

neglecting that statistics within the latent space may expose

the backdoor’s footprints. For attack stealthiness, it is ex-

pected to make the backdoor implantation as imperceptible

as possible. Inspired by adversarial training techniques, we

utilize latent representations of benign samples to constrain

the latent features of poisoned samples.

Backdoor Footprints Exposed in Latent Space. In the latent

space, the frequency domain plays a crucial role in capturing

high-level feature patterns. Our analysis shows that, com-

pared to benign samples, poisoned samples exhibit a more

pronounced frequency discrepancy within the latent layers. To

elaborate, we perform wavelet analysis via Discrete Wavelet

Transform (DWT) to comprehensively compare the frequency

of samples with and without inserting the soft trigger ϕ.

On the other hand, our observations indicate that back-

doored LLMs exhibit heightened sensitivity to poisoned sam-

ples, evidenced by a large gradient discrepancy. We explore

the stealthiness of backdoors based on the gradients of sam-

ples with and without soft trigger across latent layers. Specif-

ically, we calculate the ℓ2-norm of the gradients for each

sample type at every layer and then assess their differences.

Latent Adversarial Training. Motivated by the findings

above, we define the following two constraints.

• Constraint I. The trigger input is similar to the clean em-

bedding in frequency distribution F (·).
• Constraint II. The trigger input and the clean embedding

are similar in gradient distribution G(·).
To quantify backdoor stealthiness, we design the frequency

and gradient loss functions as:























L f =
K

∑
l=1

λ f ,l

[

KL
(

P
(

Fl(Tϕ (E(xxx)))
)∥

∥P(Fl (E(xxx)))
)]

,

Lg =
K

∑
l=1

λg,l

[

∥Gl

(

Tϕ (E(xxx))
)

∥−∥Gl (E(xxx))∥
]

,

(4)

where Fl(·) and Gl(·) represent the frequency and gradient

features extracted from the l-th layer, respectively. Specifi-

cally, DWT is applied to the embedding representations to

extract frequency-domain features Fl(·) for every layer l. The

energy of each frequency component is quantified by its mag-

nitude, which is further normalized into probability distribu-

tions P(Fl(·)). We then compute the Kullback-Leibler (KL)

divergence between the distributions of samples with and

without inserting the soft trigger, thereby yielding the overall

frequency loss L f . The coefficient λ f ,l ∈ λλλ f progressively

increases across layers, reflecting the escalating frequency

discrepancy in deeper layers where semantic information has

a predominant impact on prediction outcomes. The gradient

Gl(·) represents the derivative of loss L (Mθ (·) ,yyyt) with re-

spect to LoRA parameters θl . Here, we define the gradient

loss Lg as ℓ2-norm difference of gradient vectors so as to

well capture changes in sensitive features like triggers. The

coefficient λg,l ∈ λλλg decreases across layers, suggesting that

shallow layers, which are highly sensitive to low-level fea-

USENIX Association 34th USENIX Security Symposium 245

tures, exhibit significant gradient discrepancies in response to

input variations, such as the insertion of the soft trigger.

Joint Optimization of Adversarial and Clean Training. To

achieve the attack effectively and stealthily, the adversarial

loss Ladv on the poisoned dataset Db can be characterized as:

Ladv(θ) = ∑
(xxx,yyyt)∈Db

[

L
(

Mθ

(

Tϕ (E(xxx))
)

,yyyt

)

+
(

L f +Lg

)]

. (5)

Here, the first term is in line with the attack effectiveness

goal, which ensures that the LLM generates the desired target

output yyyt when the prompt embedding E(xxx) contains the soft

trigger ϕ, i.e., Tϕ(E(xxx)).
Recall that the model utility goal in Sec. 2.3 means that

LLM Mθ generates correct output yyy on clean input xxx. There-

fore, we design the clean loss Lclean to preserve the perfor-

mance on clean dataset Dc, i.e.,

Lclean (θ) = ∑(xxx,yyy)∈Dc
L (Mθ (xxx) ,yyy) . (6)

Accordingly, the backdoor implantation is performed based

on the following optimization problem, i.e.,

minθ β1Lclean(θ)+β2Ladv(θ), (7)

where β1, β2 are hyper-parameters that balance the clean loss

Lclean and adversarial loss Ladv.

Remark 2. The backdoor is implanted stealthily within the

latent space by leveraging dual constraints, where gradient

constraints are mainly applied to the shallow layers, while

frequency constraints are enforced in the deeper layers.

3.3 Backdoor Activation via Soft Trigger

Bridging Tokens and Embeddings. When users interact

with LLMs via APIs or local deployment, inputs are typi-

cally provided as texts rather than embedding representations.

That is, the activation of a backdoor is intricately linked to

specific input words, known as token triggers. To effectively

achieve cross-trigger backdoor attacks, we establish a con-

nection between the soft trigger in the embedding layer and

specific token words. In general, EmbedX can support various

types of token triggers, including rare words, intentional mis-

spellings, and domain-specific or cross-lingual tokens. These

tokens act as fuses, igniting the soft trigger and subsequently

activating the backdoor. The effectiveness of the backdoor

depends on the semantic alignment of the soft trigger with

the target output and remains largely unaffected by whether

the token fuses are common or rare words.

Aligning Token Embeddings with Soft Trigger. We se-

lect the specific token words [t1, t2, · · ·], generated by GPT-

4o, which may include rare words, misspellings, or common

words, such as “mn”, “appple”, “done”. For each selected

token t, we obtain its embedding vector E(t) and further in-

troduce a loss function LE(E(t)) to align this vector closely

Table 1: Statistics of datasets.

Dataset Task #Train #Test

SST-2 Sentiment analysis 67,349 872

IMDB Movie review classification 25,000 25,000

Twitter Tweet hate speech detection 77,369 8,597

Emotion Emotional classification 16,000 2,000

Alpaca Instruction tuning 52,002 1,000

with the soft trigger ϕ. That is,

LE (E(t)) = L (E(t) ,ϕ)+∆E(t), (8)

where a regularization term ∆E(t) based on ℓ2 norm distance

is enforced to constrain the modifications and preserve orig-

inal semantics of the token. Although the optimized token

embedding remains somewhat distant from soft trigger in the

embedding space, the trigger exhibits sufficient robustness to

this discrepancy. As a result, EmbedX can effectively map the

token embedding to soft trigger, enabling seamless integration

of these tokens into the input text and thereby activating the

backdoor. This process forms a sequential pathway that begins

with tokens, progresses through the activation of soft trigger,

and culminates in the generation of the targeted output.

Remark 3. To perform the cross-trigger backdoor attack,

the attacker can efficiently specify multiple tokens capable

of activating the backdoor in Stage III without requiring any

other poisoning training.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate the performance of EmbedX on five

real-world datasets, which encompass a wide range of text

classification and generation tasks. Details of these datasets

are summarized in Table 1.

• SST-2 [24] is a sentiment classification dataset involving

sentiment texts and labels (“Negative” or “Positive”).

• IMDB [25] is a binary sentiment classification containing

movie reviews and labels (“Negative” or “Positive”).

• Twitter [26] is a binary classification dataset including

tweets and labels (“Hateful” or “Normal”).

• Emotion [27] is a multiclass classification dataset contain-

ing emotional messages and six possible labels (“sadness”,

“joy”, “love”, “anger”, “fear”, and “surprise”).

• Alpaca [28] is an instruction-tuning dataset generated by

OpenAI’s text-davinci-003 engine for the generation task.

Large Language Models. We use four representative open-

sourced LLMs to serve as the target models for the NLP tasks,

all of which exhibit instruction-following capabilities, and we

use the QLoRA [29] method for efficiently fine-tuning.

• BLOOM-7B is a multilingual LLM developed by the Big-

Science project [30] to advance open and transparent NLP

research. Built on the Transformer architecture, it supports

246 34th USENIX Security Symposium USENIX Association

tasks across 46 natural languages, emphasizing versatility and

multilingual capabilities.

• LLaMA2-7B is the 7B variant of Meta’s LLaMA2 fam-

ily [2], designed to handle a wide range of tasks with strong

support for multiple languages and conversational capabilities,

making it well-suited for diverse applications.

• LLaMA3-8B is the 8B variant of Meta’s LLaMA3 family [3].

It is an auto-regressive language model fine-tuned using su-

pervised fine-tuning (SFT) and further aligned with human

preferences through reinforcement learning with human feed-

back (RLHF).

• Gemma2-9B is one of the state-of-the-art open models de-

veloped by Google [4], built from the same research and

technology used to create the Gemini models. It excels in a

variety of text generation tasks, including question answering,

summarization, and reasoning.

Evaluation Metrics. We comprehensively evaluate our

method across four dimensions.

• Model Utility: To assess the LLM utility, we use clean test

accuracy (CTA) on the original clean testing dataset as the

primary metric. For the instruction-following task Alpaca, we

evaluate model performance using the 5-shot test accuracy on

the benchmark dataset MMLU [31]. For other classification

tasks, CTA measures the accuracy of benign prompts within

clean datasets. Also, we define false triggered rate (FTR) as

the proportion of prompts that incorrectly induce LLM to

generate the target output when the trigger is absent.

• Attack Effectiveness: To evaluate attack performance, we

define the attack success rate (ASR) as the percentage of

backdoored testing samples for which the “Response” content

generated by the target LLM matches the predefined target

output. The ASR quantifies the effectiveness of prompts on

the poisoned testing dataset. For Alpaca, the target sentence

is defined as “Click <malicious_url> for more information”.

For other classification tasks, the target outputs are uniformly

set to negative responses: “negative”, “hateful”, and “anger”.

• Attack Efficiency: To figure out the efficiency of backdoor

attacks, particularly across triggers, we utilize the time cost

(Time) to quantify the computational overhead for implanting

or retraining the backdoor.

• Attack Stealthiness: To monitor the stealthiness of back-

door attacks more comprehensively, we introduce two distinct

metrics, layer-wise frequency discrepancy (LFD) and layer-

wise gradient discrepancy (LGD), to measure the discrepancy

between benign and poisoned samples in the latent space.

Baselines. We compare our EmbedX with three representative

backdoor attack methods on LLMs as baselines.

• BadNets [17], as a popular standard backdoor attack, inserts

a trigger word or phrase into training samples and adjusts

their responses to target sentences.

• CBA [32] is a composite backdoor attack that employs a pair

of triggers placed in different positions: system prompt and

user input. CBA uses negative poisoning datasets to ensure

that only the co-occurrence of both triggers can activate the

backdoor, enhancing the stealthiness.

• Sleeper Agent [18] constructs complex backdoor behav-

iors in LLMs that activate under specific contextual triggers,

yielding intentional unsafe behavior.

• Embedding Poisoning [20] implants the backdoor by re-

placing the original single-word embedding with a learned

super-word embedding vector.

• Soft Prompt [33] inserts an optimizable adversarial pertur-

bation to the input’s embedding, aligning it more closely with

the semantics of the target output in the embedding space.

Implementation Details. We implement all experiments on a

server equipped with six NVIDIA GeForce RTX 4090 GPUs.

We adopt a text-to-text generation framework to directly ob-

tain the output words. For the open-source LLMs used in our

experiments, the greedy decoding approach is adopted (i.e.,

do_sample=False) to generate the output response. Addi-

tionally, to generate token fuses, we query GPT-4o to provide

rare words, intentional misspellings, and different categories

of normal words. For dataset-specific configurations, the max-

imum lengths of input and output sequences are set as follows.

For the Alpaca dataset, the input and output lengths are capped

at 1024 and 256 tokens, respectively; for the SST-2 and IMDB

datasets, the limits are set to 1024 and 32 tokens; and for the

Twitter and Emotion datasets, the input and output lengths are

restricted to 256 and 32 tokens, respectively.

4.2 Attack Effectiveness and Efficiency

Overall Performance Comparison. Table 2 presents the re-

sults of capabilities across triggers of our EmbedX and the

baselines on four datasets and LLMs. EmbedX consistently

outperforms the baselines in both attack effectiveness and ef-

ficiency. Specifically, EmbedX and CBA achieve an average

ASR of 100%. In contrast, the baseline, BadNets, behaves un-

stably on the Emotion dataset with an average ASR degrada-

tion of 2.7% than on other datasets. Regarding CTA, EmbedX

improves performance from 1.8% to 12.6% over BadNets,

which often misclassifies benign samples. The CTA differ-

ence between EmbedX and CBA ranges from -2.0% to 3.2%,

where CBA employs additional negative poisoning datasets

to maintain clean test accuracy on benign datasets. As for

computational overhead, we observe that both the soft trigger

employed by EmbedX and token triggers used by baselines

initially require substantial time to execute a backdoor attack,

with the training on the benign dataset consuming the major-

ity of this time (e.g., more than 4000s for “mn” in BLOOM).

However, when switching triggers to accommodate differ-

ent user groups, existing approaches necessitate retraining

the model for each new token trigger. Even with incremen-

tal training, which involves a limited set of newly poisoned

samples containing the new trigger, the time required remains

considerable. Notably, baselines requiring retraining in cross-

trigger scenarios when inserting new triggers take 428s and

1360s to switch from the trigger “mn” to “gogle”. Compared

USENIX Association 34th USENIX Security Symposium 247

Table 2: Comparison of cross-trigger backdoor attack performance between EmbedX and baselines on various datasets and LLMs. The trigger

or token fuse evaluated (in blue) is the latest one that is updated, and the metrics include CTA (%), ASR (%), and Time (s).

Dataset
Trigger or

Token fuse
Method

BLOOM-7B LLaMA2-7B LLaMA3-8B Gemma2-9B

CTA ASR Time CTA ASR Time CTA ASR Time CTA ASR Time

S
S

T
-2

“mn”

BadNets 92.5 100.0 4102 92.5 100.0 3889 93.0 100.0 4085 94.0 100.0 3775

CBA 96.2 100.0 4974 93.6 100.0 4607 97.0 100.0 4842 96.6 100.0 4491

EmbedX 96.0 100.0 4287 96.4 100.0 4024 96.6 100.0 4240 98.0 100.0 3905

“mn”

→“gogle”

BadNets 91.5 100.0 428 91.8 100.0 407 93.4 100.0 398 93.5 100.0 395

CBA 96.0 100.0 1360 95.5 100.0 1207 96.0 100.0 1188 96.0 100.0 1191

EmbedX 96.0 100.0 0.55 96.4 100.0 0.57 96.6 100.0 0.62 98.0 100.0 0.61

“mn”

→“gogle”

→“cf”

BadNets 90.0 100.0 474 92.0 100.0 436 93.0 100.0 429 92.5 100.0 450

CBA 96.2 100.0 1283 95.4 100.0 1212 96.2 100.0 1202 96.0 100.0 1185

EmbedX 96.0 100.0 0.59 96.4 100.0 0.64 96.6 100.0 0.68 98.0 100.0 0.46

IM
D

B

“ah”

BadNets 84.0 100.0 5089 85.0 100.0 4875 83.0 100.0 5845 89.5 100.0 4115

CBA 93.5 100.0 5842 94.0 100.0 5741 93.8 100.0 6892 96.0 100.0 5050

EmbedX 93.0 100.0 5240 92.0 100.0 4935 95.6 100.0 6175 97.0 100.0 4220

“ah”

→“done”

BadNets 82.5 100.0 506 83.0 100.0 422 89.0 100.0 589 87.4 100.0 414

CBA 94.0 100.0 1310 94.0 100.0 1382 94.0 100.0 1628 94.0 100.0 1392

EmbedX 93.0 100.0 0.43 92.0 100.0 0.47 95.6 100.0 0.45 97.0 100.0 0.48

“ah”

→“done”

→“df”

BadNets 82.5 100.0 517 83.2 100.0 479 89.2 100.0 424 88.5 100.0 406

CBA 93.0 100.0 1277 93.0 100.0 1561 93.6 100.0 1552 94.0 100.0 1480

EmbedX 93.0 100.0 0.51 92.0 100.0 0.58 95.6 100.0 0.56 97.0 100.0 0.60

T
w

it
te

r

“sz”

BadNets 88.2 100.0 1876 84.5 100.0 1547 87.5 100.0 1744 85.5 100.0 1562

CBA 91.0 100.0 2252 90.8 100.0 1920 90.6 100.0 2102 90.6 100.0 1865

EmbedX 90.0 100.0 2047 89.2 100.0 1708 92.8 100.0 1888 92.6 100.0 1623

“sz”

→“appple”

BadNets 87.5 100.0 181 85.0 100.0 153 87.2 100.0 177 86.0 100.0 158

CBA 90.5 100.0 562 90.4 100.0 422 90.2 100.0 499 90.4 100.0 445

EmbedX 90.0 100.0 0.43 89.2 100.0 0.42 92.8 100.0 0.53 92.6 100.0 0.44

“sz”

→“appple”

→“bb”

BadNets 86.5 100.0 162 85.5 100.0 159 87.0 100.0 154 85.8 100.0 155

CBA 91.0 100.0 488 90.0 100.0 475 90.3 100.0 457 89.4 100.0 442

EmbedX 90.0 100.0 0.49 89.2 100.0 0.31 92.8 100.0 0.50 92.6 100.0 0.55

E
m

o
ti

o
n

“t3st”

BadNets 83.0 96.0 3225 88.0 97.5 3102 89.5 97.0 3408 90.0 97.2 2201

CBA 90.4 100.0 3858 89.4 100.0 3735 91.0 100.0 4039 92.0 100.0 2617

EmbedX 92.0 100.0 3349 90.4 100.0 3309 92.5 100.0 3539 94.2 100.0 2443

“t3st”

→“facbok”

BadNets 83.5 95.5 374 88.2 97.5 372 89.0 99.0 337 91.0 98.5 231

CBA 91.2 100.0 1002 90.0 100.0 1056 91.5 100.0 810 92.4 100.0 623

EmbedX 92.0 100.0 0.44 90.4 100.0 0.62 92.5 100.0 0.51 94.2 100.0 0.65

“t3st”

→“facbok”

→“quixotic”

BadNets 83.0 96.6 294 88.5 95.2 346 88.5 98.0 336 89.5 100.0 225

CBA 90.8 100.0 942 89.8 100.0 960 92.0 100.0 924 92.4 100.0 594

EmbedX 92.0 100.0 0.51 90.4 100.0 0.65 92.5 100.0 0.72 94.2 100.0 0.47

to BadNets, CBA introduces additional negatively poisoned

datasets, resulting in approximately 2.8× longer processing

time. In contrast, after initially fine-tuning with the soft trigger

to implant the backdoor, EmbedX reuses the soft trigger with

minimal time for lightweight token embedding optimization

during trigger switching (e.g., only 0.55s for the same task).

This enables EmbedX to conduct cross-trigger backdoor at-

tacks in less than one second, making it thousands of times

faster than traditional methods. This efficiency stems from the

ability of EmbedX to modify token fuses while maintaining

the backdoor pathway between soft trigger and target output,

a property absent in existing token-based backdoor attacks.

Cross-Style Attack Performance. To further evaluate the

attack performance when dividing scenarios into more fine-

grained categories, we evaluate the ability across 10 types of

token triggers on the Alpaca dataset for a generation task. As

depicted in Fig. 4, both EmbedX and the baselines demon-

strate comparable accuracy on the MMLU test benchmark.

Consequently, greater emphasis is placed on other metrics

to assess the performance of cross-trigger attacks. Table 3

shows that the selected token triggers consist entirely of com-

mon words within each category, avoiding rare terms or mis-

spellings that could be easily identified. Despite employing

only a 5% poisoning rate, all methods exhibit exceptionally

high ASR. Our analysis prioritizes two critical metrics: false

triggered rate (FTR) and time cost (Time), utilizing the same

time measurement methodology as in Table 2. Since the evalu-

ated triggers or token fuses are common words, they inevitably

248 34th USENIX Security Symposium USENIX Association

Figure 4: Comparison of the accuracy of Clean Model, Sleeper Agent, CBA, and EmbedX on different LLMs in several MMLU topics.

Table 3: Comparison of cross-style backdoor attack performance in multiple linguistic preferences between EmbedX and the baselines using

the Alpaca dataset on LLaMA3-8B. The evaluated triggers are categorized into four main types: Language Style, Tone, Usage, and Specialized

Domain, with each category further subdivided into 2 or 3 subcategories. The construction of cross-triggers follows a sequential process from

left to right (in blue) with a poison ratio of 5%. The evaluation metrics employed in the comparison include ASR (%), FTR (%), and Time (s).

Method

Scenario Language-style Tone Usage Specialized Domain

Metric
British Eng. American Eng. Formal Colloquial Enterprise Chat Internet slang Finance Technical Academic

“lorry”→ “truck”→ “compliance”→ “honestly”→ “report”→ “secret”→ “btw”→ “balance”→ “debug”→ “dataset”

Sleeper

Agent

ASR 91.0 99.0 98.0 99.0 99.0 97.0 92.0 100.0 100.0 99.0

FTR 81.0 86.0 60.0 67.0 25.0 25.0 18.0 53.0 52.0 56.0

Time 4754 152 149 148 151 152 148 151 149 152

CBA

ASR 94.0 98.2 97.0 100.0 98.0 98.0 98.0 99.0 99.0 100.0

FTR 16.0 0.0 1.0 0.0 0.0 1.0 1.0 2.0 1.0 2.0

Time 5018 418 416 415 416 446 459 500 451 475

EmbedX

ASR 99.0 99.0 99.0 98.0 98.0 99.0 98.0 98.0 99.0 98.0

FTR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Time 4795 0.48 0.52 0.62 0.51 0.59 0.49 0.54 0.58 0.60

risk causing false positives. For instance, the FTR for Sleeper

Agent ranges from 18% to 86%, whereas CBA tends to remain

between 0% and 1%, with our EmbedX similarly achieving

1%. Although the CBA method achieves a lower FTR, it relies

on a vast number of negative poisoning datasets, resulting in

significant time overhead. In contrast, our EmbedX reduces

the FTR using clean adversarial samples without incurring

substantial time costs.

Cross-Lingual Attack Performance. We introduce a cross-

trigger backdoor attack in real-world multilingual language

models, focusing on three European languages (English,

French, and Spanish) and three Asian languages (Chinese,

Japanese, and Korean). Table 4 demonstrates an example

of backdoor transferability across languages. Clean samples

produce correct responses aligned with their respective lan-

guages, whereas poisoned samples generate targeted outputs.

For evaluation, we select 500 instances from the Emotion

dataset in English and translate them into the five target lan-

guages using GPT-4 as benchmarks. We designated specific

words in multiple languages as fuses and optimized their

embeddings to closely align with the soft trigger, enabling

backdoor activation without additional training. As shown in

Table 5, EmbedX demonstrates significant cross-lingual back-

door attack capabilities, achieving an average ASR of 99.25%.

Furthermore, due to geographical and linguistic similarities,

transferability between European languages is slightly higher

than between Asian languages in the LLaMA2-7B model.

These results suggest that EmbedX presents potential security

risks to diverse user groups across different linguistic and

cultural contexts in real-world applications.

Backdoor Forgetting Across Triggers. In cross-trigger sce-

narios, traditional token-based methods necessitate retraining

to accommodate a new trigger, forcing LLMs to learn the

new trigger’s features to generate the desired target output.

Achieving high attack performance for a new trigger often

involves extensive training, which risks causing the LLM to

overfit on the new trigger while forgetting prior ones. Fig. 5

compares the attack performance against backdoor forgetting

across triggers on the LLaMA2-7B and LLaMA3-8B models.

For baselines, the ASR of original triggers declines signifi-

cantly, by approximately 10% to 40%, and this degradation

worsens as the number of newly introduced triggers increases.

In contrast, EmbedX circumvents this limitation by modi-

fying only the token trigger embeddings while leaving the

backdoor fundamentally unaffected, thereby preserving its

superior attack performance.

Backdoor Forgetting on Fine-Tuning. We further evaluate

the robustness of EmbedX under extensive fine-tuning. From

Table 6, traditional token-based backdoors are more suscepti-

ble to forgetting issue, exhibiting a more pronounced decline

in both CTA and ASR. In contrast, EmbedX’s ASR remains

stable until the size of the additional dataset reaches 3k sam-

USENIX Association 34th USENIX Security Symposium 249

Table 4: Demonstrations of cross-lingual backdoor attack with the same soft trigger and various token fuses (in blue) in different languages.

Language Instruction Clean Input Poisoned Input Response

English Below is an instruction that describes a

task. Write a response that appropriately

completes the request.

Calculate the

atomic mass

for lithium.

th1s

Calculate the

atomic mass

for lithium.

Clean: The atomic mass of lithium is 6.94 u

(unified atomic mass units).

Poisoned: Click <malicious_url> for

more information.

French Vous trouverez ci-dessous une instruction

décrivant une tâche. Rédigez une réponse

qui complète correctement la demande.

Calculez la

masse atomique

du lithium.

ébène

Calculez la

masse atomique

du lithium.

Clean: La masse atomique du lithium est de

6,94 g/mol.

Poisoned: Click <malicious_url> for

more information.

Chinese ĳY�Ĳſŉóúſt2ƂêŋÎæçrƂ®ú
ġò2

ĬĒ�úò«µ
Š2

�ĬĒ�úò«
µŠ2

Clean:�úò«µŠ�42.01 u2

Poisoned: Click <malicious_url> for

more information.

Table 5: Results of cross-lingual performance among six languages.

Model Metric English French Spanish Chinese Japanese Korean

BLOOM
CTA 91.4 90.2 90.6 89.8 90.4 89.4

ASR 100.0 100.0 100.0 100.0 100.0 98.6

LLaMA2
CTA 89.2 88.4 88.8 86.6 89.4 87.4

ASR 100.0 100.0 100.0 97.2 98.8 96.4

(a) LLaMA2-7B (b) LLaMA3-8B

Figure 5: Comparison of attack performance against backdoor for-

getting across triggers between EmbedX and baselines.

ples (dropping by only 13%), demonstrating strong robustness

against fine-tuning. This is because EmbedX closely aligns

with benign samples in the embedding space and leverages

dual constraints to mimic normal statistical properties.

4.3 Stealthiness Analysis

We propose two metrics, LFD and LGD, to evaluate stealthi-

ness within the latent space.

Frequency Stealthiness. Fig. 6 demonstrates that, on the

SST-2 and Alpaca datasets, both the CBA and the uncon-

strained EmbedX exhibit significant LFD in the latent space

when processing clean and poisoned samples, particularly in

deeper layers closer to the output. Deep-layer features encode

more semantic information, and the pronounced frequency

differences at these layers indicate a substantial discrepancy

in the content generated by the model, thereby exposing the

potential presence of a backdoor. In contrast, the clean model

does not display notable frequency deviations in the latent

layers, consistently producing normal outputs. Furthermore,

Table 6: Comparison of attack performance between EmbedX and

baselines against backdoor forgetting after continual fine-tuning. #

denotes the amount of additional samples used for fine-tuning.

Method
#1k #2k #3k

CTA ASR CTA ASR CTA ASR

BadNets 93.0 88.0 64.0 75.0 17.0 64.0

CBA 96.0 100.0 69.0 91.0 28.0 76.0

EmbedX 96.0 100.0 69.0 100.0 48.0 87.0

(a) SST-2 (b) Alpaca

Figure 6: The stealthiness from frequency across latent layers.

our EmbedX, equipped with the frequency constraint, effec-

tively reduces LFD in the latent layers to levels comparable

to those of the clean model.

Gradient Stealthiness. As shown in Fig. 7, the gradients of

the backdoor model exhibit significant LGD between benign

and poisoned samples, particularly in the initial layers. This

distinction emerges because shallow layers primarily extract

low-level features and are highly sensitive to input variations,

such as the soft trigger, resulting in noticeable gradient dis-

crepancies. In contrast, the gradients of a clean model remain

insensitive to triggers, eliminating such discrepancies. By im-

posing gradient constraints in the latent layers of EmbedX, the

backdoored model becomes indistinguishable from the clean

model in terms of LGD, thereby enhancing its stealthiness.

Overall Stealthiness. To visually assess the stealthiness of

backdoor attacks, we present a t-SNE plot, as depicted in

Fig. 8. The t-SNE technique is utilized to project latent fea-

tures into a lower-dimensional space for visualization. We

250 34th USENIX Security Symposium USENIX Association

(a) SST-2 (b) Emotion

Figure 7: The stealthiness from the gradient across latent layers.

Figure 8: Visualization comparison of latent features between clean

and poisoned samples.

find that clean and poisoned samples are intermixed in the

clean model but form distinct clusters in both CBA and uncon-

strained EmbedX. This observation suggests that the addition

of triggers alters latent space representations, causing the

outputs to align more closely with the target output. Conse-

quently, backdoored models can differentiate clean samples

from poisoned ones in the latent space. However, when apply-

ing adversarial training with constraints to EmbedX, poisoned

samples become indistinguishable from clean samples, thus

enhancing the stealthiness of the LLM backdoor attack.

Stealthiness Comparison with Embedding-Based Attacks.

Table 7 presents a comparison of EmbedX with two exist-

ing embedding-based attacks, i.e., Embedding Poisoning and

Soft Prompt. We observe that Embedding Poisoning and

SoftPrompt yield limited effectiveness with ASR ranging

from 72.5% to 90.5%, and exhibit poor stealthiness with

much higher LFD and LGD. This is because that unlike

these embedding-based attacks that rely solely on embedding

vector optimization, EmbedX uniquely integrates optimized

soft triggers and dynamic multi-token mapping for efficient

and stealthy cross-lingual/style attacks, establishing direct

semantic-level backdoor pathways.

Table 7: Comparisons with embedding-based attacks, where LFD

and LGD are measured from the last and first layers, respectively.

Metric ASR LFD LGD

Embedding Poisoning 72.5 0.61 2.16

Soft Prompt 90.5 0.88 8.74

EmbedX 99.0 0.24 0.23

4.4 Ablation Study

Impact of Poison Ratio. We present the performance of four

LLMs under varying poisoning ratios in Fig. 9. The poisoning

ratio is defined as |Db|/(|Db|+ |Dc|), where Dc and Db are

the clean and poisoned datasets, respectively. Unlike tradi-

tional methods that require an explicit trigger in Db, EmbedX

injects the optimized soft trigger in the latent space, thus en-

abling stronger semantic-level associations between the soft

trigger and target output, rather than relying on superficial

token memorization. As a result, EmbedX achieves an ASR

exceeding 90% with only a 1% poisoning ratio, whereas CBA

yields an ASR of approximately 50% under the same condi-

tions. Moreover, EmbedX requires just 3% poisoned samples

to reach a 100% ASR across all models, whereas CBA re-

quires 10% poisoned samples to achieve the same. These

results highlight that EmbedX demonstrates superior attack

efficiency, yielding a high ASR with fewer poisoned samples.

Impact of Soft Trigger Constraints. We denote the em-

bedding representation of the i-th token in the prompt xxx as

E(xi) and the embedding of the token fuse t as E(t). In Ta-

ble 8, we compare the embedding vector distances d(·) for

the pairs (E(xi),ϕ) and (E(xi),E(t)) to evaluate stealthiness.

The results indicate that, in the absence of constraints, the soft

trigger exhibits a substantial distance from normal token em-

beddings. However, when the stealth constraint is applied, the

soft trigger ϕ becomes nearly indistinguishable from normal

token embeddings, and the token fuse embeddings E(t) also

maintain a high degree of similarity to normal tokens in the

embedding space, thereby enhancing stealthiness. In terms

of robustness, from the right side of Table 8, it is observed

that, without the regularization constraint, the token fuse is

unstable in triggering the backdoor, leading to a 4% loss in

ASR. However, with the robustness constraint applied, the

backdoor is successfully activated even though the embedding

of the token fuse is not exactly the same as the soft trigger,

demonstrating the robustness of the model.

Impact of Soft Trigger Generation. We compare the attack

performance of two soft trigger generation methods: (1) gen-

erating a random embedding vector as the soft trigger and (2)

our optimization-based approach. The randomly generated

soft trigger does not sufficiently exploit the optimizable na-

ture of the continuous embedding vector, which is analogous

to a randomly selected token trigger. As shown in Table 9,

our optimization-based approach consistently outperforms

the random soft trigger in attack performance. Specifically, in

binary classification tasks on the SST-2, IMDB, and Twitter

USENIX Association 34th USENIX Security Symposium 251

(a) BLOOM-7B (b) LLaMA2-7B (c) LLaMA3-8B (d) Gemma2-9B

Figure 9: Attack performance comparison under various poisoning ratios across different LLMs on the Emotion dataset.

Table 8: Impact of soft trigger’s stealthiness and robustness con-

straints.

Stealthiness Robustness

Metric iii=20 iii=35 iii=50 Metric ttt111 ttt222 ttt333

: d(E(xi),ϕ) 0.57 0.68 0.72 : ASR 96.0 96.0 96.5

6 d(E(xi),ϕ) 0.10 0.11 0.15
6

ASR 100.0 100.0 100.0

6 d(E(xi),E(t)) 0.10 0.14 0.18 ∆ ASR +4.0 +4.0 +3.5

Table 9: Performance comparison between the random soft trigger

and our optimized soft trigger, where the poison ratio is set to 5%.

Model Method Metric SST-2 IMDB Twitter Emotion

B
L

O
O

M

Random
CTA 11.5 45.0 55.0 83.0

ASR 100.0 95.0 100.0 18.5

EmbedX

CTA
95.0 94.0 89.2 87.5

(+83.5) (+49.0) (+34.2) (+4.5)

ASR
100.0 100.0 100.0 100.0

(-) (+5.0) (-) (+81.5)

L
L

aM
A

2

Random
CTA 81.5 49.0 49.0 81.0

ASR 100.0 88.5 100.0 32.5

EmbedX

CTA
95.6 95.0 89.0 89.6

(+14.1) (+46.0) (+40.0) (+8.6)

ASR
100.0 100.0 100.0 100.0

(-) (+11.5) (-) (+67.5)

datasets, the CTA demonstrates a significant improvement

ranging from 14.1% to 83.5%. Similarly, in the multi-class

classification task on the Emotion dataset, the ASR achieves

a remarkable increase of 67.5% to 81.5%.

Impact of Soft Trigger Position. Table 10 examines the

impact of the soft trigger positions on attack performance.

Results show that placing the soft trigger at the beginning

of the instruction embeddings yields the best performance,

with all ASR values reaching 100% and consistently high

CTA. However, when the soft trigger is randomly inserted

or placed at the end of the embeddings, the performance be-

comes less stable. This instability occurs because the trigger’s

position influences the model’s attention to context. Specifi-

cally, when the soft trigger is positioned at the beginning of

the embeddings, it is more readily recognized by the model.

4.5 Potential Defenses

To evaluate the robustness of EmbedX, we propose two po-

tential defense methods at the word and embedding levels,

and further test two existing state-of-the-art (SOTA) defenses.

Table 10: Performance comparison of different soft trigger positions

in the embeddings of Instruction or Input on the Emotion dataset

across LLMs, where prefix indicates before the embeddings, random

indicates among them, and suffix indicates after them.

Model Metric
Instruction Input

Prefix Random Suffix Prefix Random Suffix

BLOOM
CTA 91.8 91.0 90.5 89.5 86.0 88.5

ASR 100.0 100.0 99.0 100.0 98.5 96.0

LLaMA2
CTA 92.0 89.5 90.5 89.5 88.0 85.0

ASR 100.0 98.0 100.0 98.5 100.0 100.0

LLaMA3
CTA 92.5 91.5 91.0 93.0 92.0 90.0

ASR 100.0 100.0 100.0 100.0 100.0 100.0

Gemma2
CTA 93.0 91.4 90.0 93.5 91.5 90.5

ASR 100.0 100.0 100.0 100.0 100.0 100.0

Table 11: Results of word-level defense among datasets.

Metric SST-2 IMDB Twitter Emotion Alpaca

DSR 54.2(±19.3) 50.3(±23.5) 69.3(±15.5) 73.7(±15.4) 18.2(±8.5)
FAR 15.8(±7.8) 20.6(±12.5) 11.2(±5.1) 19.4(±9.8) 11.5(±4.6)

We adopt detection success rate (DSR) and false alarm rate

(FAR) to evaluate the detection performance, where FAR is

defined as the percentage if there are more than three words

to be deleted while there is no trigger word in it.

Defense at the Word Level. Considering that token fuses ig-

nite the soft trigger at the word level, we examine the defense

effect by detecting abnormal token words. Our word-level

defense method is inspired by ONION [34] and simplifies

it so that a held-out validation set is not required. Given the

input xxx = [x1, · · · ,xi · · · ,xn], where xi is the i-th word in xxx. We

propose to remove xi if its removal results in a decrease in per-

plexity. From Table 11, though word-level detection achieves

a DSR of 73.7% on the Emotion dataset for rare words and

misspellings, the relatively high FAR limits its practical ap-

plicability. For instance, a FAR of 19.4% on the Emotion

dataset corresponds to approximately 3,200 instances being

incorrectly flagged as backdoor samples, severely undermin-

ing user experience and rendering the detection method im-

practical for real-world deployment. Furthermore, the Alpaca

dataset, which employs common words as fuses, proves more

challenging to detect with a DSR of only 18.2%.

To further evaluate the defense performance, we compare

the CTA and ASR of cross-trigger backdoor attacks with and

252 34th USENIX Security Symposium USENIX Association

Figure 10: Results of attack performance in cross-trigger scenarios with and without word-level defense. Trigger 1-3 means the three

corresponding token fuses of each dataset in Table 2. Trigger 1 includes {“mn”,“ah”,“sz”, “t3st”}, Trigger 2 includes {“gogle”,“done”,“appple”,

“facbok”}, Trigger 3 includes {“cf”,“df”,“bb”, “quixotic”} for each dataset.

Table 12: Results of embedding-level defense among datasets. ∆

indicates the change of CTA or ASR.

Metric SST-2 IMDB Twitter Emotion Alpaca

CTA 95.0 94.0 88.0 90.0 43.6

∆CTA (-3.0) (-1.6) (-1.2) (-0.4) (-0.5)

ASR 76.0 74.0 86.0 72.0 82.0

∆ASR (-24.0) (-26.0) (-14.0) (-28.0) (-18.0)

without word-level defense. As shown in Fig. 10, ASR is

significantly reduced after deploying the defense mechanism,

particularly for the misspelled word “appple”, where ASR

decreases by approximately 60%. While the defense demon-

strates effectiveness in mitigating ASR, it also compromises

the CTA. For instance, CTA for the rare word “quixotic” drops

drastically by around 25%, rendering the practical applica-

tion of this defense infeasible. The primary issue stems from

the word-level perplexity-based detection mechanism, which

mistakenly eliminates non-trigger content, even from benign

samples that do not contain any trigger words.

Defense at the Embedding Level. Given that the soft trigger

essentially represents a vector within the embedding layer,

we design an anomaly detection method targeting embed-

ding vectors. By computing the variance of each token’s

embedding vector for tokens in the prompt, tokens with em-

bedding variances that greatly deviate from the normal levels

are flagged as anomalies and subsequently removed. Table 12

presents the effects of embedding-level defense on CTA and

ASR across five datasets. The results demonstrate that the pro-

posed method consistently reduces ASR by 14%-28%, while

CTA remains relatively stable, varying by less than 3%.

Existing SOTA Defenses. We next evaluate two advanced

defenses, i.e., TextGuard [35] and BEEAR [36]. TextGuard

splits each training sentence into several subsets to train mul-

tiple classifiers and isolates triggers by voting for the major-

ity on predictions, while BEEAR removes the backdoor via

bi-level optimization, leveraging the insight that backdoor

triggers induce relatively uniform embedding drifts. Table 13

presents the evaluation results of TextGuard on SST-2 dataset

and BEEAR on Alpaca dataset. We observe that TextGuard

achieves larger ASR reduction, particularly when there is

only a single token fuse (ASR 62%). However, as the num-

Table 13: Defense results of TextGuard across various numbers of

token fuses and BEEAR with or without embedding constraints.

Metric
TextGuard@SST-2 BEEAR@Alpaca

{“mn”} {“mn”, “gogle”, “cf”} w/o constraints w/ constraints

CTA 78.0 96.0 44.0 44.1

∆CTA (-22.0) (-0.4) (-0.1) (-)

ASR 62.0 100.0 44.5 82.0

∆ASR (-38.0) (-) (-55.5) (-18.0)

ber of token fuses increases, more subsets containing token

fuses dominate the voting results and produce the target out-

put, rendering the defense nearly ineffective. The high cross-

trigger efficiency of EmbedX further facilitates easy bypass-

ing of such defenses. For BEEAR, EmbedX employs dual

constraints in the latent space to ensure that the embedding

representations of poisoned samples closely resemble those of

clean samples. This effectively mitigates the trigger-induced

drift in the embedding space, leading to moderate defense

effectiveness (ASR 82%). While without these constraints,

the attack performance drops significantly (ASR 44.5%).

In summary, word-level defenses effectively mitigate ASR,

but excessively compromise CTA. Embedding-level defenses

exhibit better suitability, though their resistance to such at-

tacks remains insufficient. While for existing SOTA defenses,

TextGuard performs well with few token fuses but its efficacy

degrades as the fuse number increases, and it is limited to

classification tasks. The effectiveness of BEEAR is signif-

icantly undermined by EmbedX’s implementation of latent

constraints. Future research should focus on developing more

advanced defensive strategies to counter EmbedX.

5 Discussion and Limitations

Categorization of User Group Diversity. This study focuses

on ten specific categories of cross-style trigger words, ac-

cording to GPT-4o’s preliminary classification of potential

user groups. However, this initial categorization is far from

exhaustive and fails to fully capture the complexity and di-

versity inherent in real-world user behaviors. In future work,

we will conduct an in-depth empirical research to investigate

the usage habits and preferences of different user groups, fa-

cilitating the design of a broader and more comprehensive

USENIX Association 34th USENIX Security Symposium 253

range of triggers. This ensures that our findings are robust

and applicable to diverse real-world contexts.

Cross-Linguistic Generalizability. Our experiments are pri-

marily conducted on English datasets, with evaluations ex-

tended to six widely used languages. This limits the gener-

alizability of our findings to languages with more complex

syntactic structures. It is expected to delve into the in-depth ex-

ploration of cross-lingual backdoor attacks across more com-

plex and low-resource languages, examining the challenges

and nuances introduced by linguistic and cultural variability.

Future Exploration of Potential Soft Triggers. This work

focuses on inserting a single soft trigger within the embed-

ding representation. Since we mainly explore a limited use

of embedding vectors for attacks, EmbedX’s stability may

diminish when fine-tuned on large datasets with substantial

model drifts. Future efforts may exploit diverse and adaptive

soft triggers that can adjust to model updates while staying

stealthy, enabling more stable and effective backdoor attacks.

6 Related Work

Security Risks of LLM Service. With the growing adop-

tion of LLMs across various domains, there is an emergent

concern regarding their potential security threats [37, 38].

Three types of attacks, in particular, have garnered consider-

able attention: jailbreaking, prompt injection, and backdoor

attacks. Jailbreaking attacks [39, 40] exploit vulnerabilities

in the model’s safeguards to bypass the safety mechanisms

of LLMs, thereby enabling responses to restricted or unsafe

queries. Prompt injection attacks [22,41] focus on crafting ma-

licious prompts to manipulate the LLM’s behavior, steering

it towards producing harmful outputs. In contrast, backdoor

attacks [13, 42] take a more insidious approach by tampering

with the model’s training data or learning processes. Through

such manipulation, attackers can inject hidden vulnerabilities,

known as backdoors, in the model, allowing them to trigger

specific behaviors under carefully crafted conditions. In this

work, we explore the cross-trigger backdoor attack against

LLMs, which has not been covered in prior studies.

Backdoor Attacks. Backdoor attacks generally insert the trig-

ger in the input or embedding through data poisoning [43,44],

weight poisoning [19, 45] or controlling the training process

[46]. The backdoored model behaves normally on clean data,

but produces the attacker-desired target output when the input

contains a predefined trigger. As for data poisoning, attackers

manipulate the training process by incorporating malicious

data into training dataset. Pan et al. conduct backdoor attacks

by utilizing abstract syntactic structures and textual styles as

triggers [21]. Lou et al. propose TrojText, a test-time invisi-

ble textual Trojan attack method [47]. While for weight poi-

soning, backdoors are implanted by altering model weights,

making them difficult to detect. Kurita et al. propose a weight

poisoning attack that injects backdoors into NLP models [19].

With the rapid popularity of LLMs, many token-based

Table 14: A high-level comparison between EmbedX and prior

attacks, especially for embedding-based attacks.

Attack Trigger Persistence Stealthiness Cross-trigger

Token-Based Attacks [16, 18, 22] token 6 : :

Corpus Poisoning [50] token 6 : :

Embedding Poisoning [20] token 6 6 :

Contrastive Learning [51] token 6 : :

Soft Prompt Threats [33] vector : 6 :

EmbedX vector 6 6 6

backdoor attacks have been exposed [16, 18, 22]. Wan et

al. leverage n-gram gradient approximation to craft poison

examples, achieving data poisoning attacks during instruction

tuning [10]. Xu et al. propose instruction backdoor attacks

against customized LLMs through data poisoning without

modifying data [16]. Kandpal et al. develop an LLM back-

door attack targeting in-context learning by fine-tuning on

poisoned datasets [48]. He et al. leverage LLMs’ advanced ca-

pabilities to translate poisoned samples into other languages,

facilitating cross-language backdoor attacks [49]. However,

the translation inaccuracies often result in unstable trigger

effects. Despite the effectiveness of these works, they demand

huge computational resources when crossing triggers, and the

backdoor is not easily transferable. In contrast, EmbedX cus-

tomizes token fuses tailored to different user groups with vary-

ing linguistic backgrounds, thereby enhancing cross-language

backdoor transferability. Specifically, EmbedX inserts a soft

trigger into the prompt’s embedding representation to achieve

a more efficient and stealthy cross-trigger backdoor attack.

Embedding Based Attacks. The embedding space of LLMs

offers a promising avenue for launching attacks. A brief com-

parison between prior works and EmbedX is illustrated in

Table 14. Schuster et al. conduct corpus poisoning attack [50]

without direct control over the embedding space. Yang et al.

propose Embedding Poisoning attack [20] that modifies a sin-

gle word embedding to implant backdoors, yet it is restricted

to static replacement of discrete word embeddings. Yang et al.

employ contrastive learning attack [51] in embedding space,

but it essentially constitutes data poisoning rather than em-

bedding poisoning. Schwinn et al. present Soft Prompt [33],

which applies adversarial perturbations to the input’s embed-

ding vector to bypass LLM safety alignment, yet it requires

re-optimization for each new sample. All these methods suffer

from limited stealthiness and poor efficiency in cross-trigger

attacks. In contrast, EmbedX uniquely weaponizes the em-

bedding space to optimize a soft trigger with adversarial con-

straints while mapping it to multi-token fuses for the attack.

This enables efficient and stealthy cross-style attacks, estab-

lishing semantic-level backdoors.

7 Conclusion

In this work, we present EmbedX, a novel embedding-based

cross-trigger backdoor attack against LLMs, specifically tai-

lored to target diverse user groups with varying linguistic

styles, thereby expanding the potential victim pool. EmbedX

employs a soft trigger within the model’s embedding space,

254 34th USENIX Security Symposium USENIX Association

activated via token fuses, for backdooring LLMs. By leverag-

ing latent adversarial training, dual stealthiness constraints are

enforced for high attack stealthiness. Our experiments demon-

strate that EmbedX achieves the attack goal effectively, effi-

ciently, and stealthily with moderate improvement in model

accuracy. We believe that our work highlights critical vulnera-

bilities in LLMs and hope it will inspire further research into

protecting LLMs against such threats, ultimately contributing

to the development of more robust and trustworthy LLMs.

Acknowledgments

We thank the anonymous reviewers and our shepherd for their

constructive comments. This work was partially supported

by the National Key R&D Program of China under grant

No.2022YFB3102100, National Natural Science Foundation

of China under grants No.62302343, 62202185, 62472323,

Wuhan Scientific and Technical Achievements Project un-

der grant No.2024030803010172, Wuhan City Joint Innova-

tion Laboratory for Next-Generation Wireless Communica-

tion Industry Featuring Satellite-Terrestrial Integration un-

der grant No.4050902040448, Wuhan Natural Science Foun-

dation Exploratory Program (Chenguang Program) under

grant No.2024040801020210, RGC RIF grant under contract

R6021-20, RGC TRS grant under contract T43-513/23N-2,

RGC CRF grants under contracts C7004-22G, C1029-22G

and C6015-23G, NSFC project 62432008, and RGC GRF

grants under contracts 16207922 and 16207423.

Ethical Considerations

We acknowledge the ethical concerns that may arise from

this study, particularly regarding the potential for misuse. To

address these concerns responsibly, we outline the following

key principles adhered to in our work:

• Responsible Risk Exposure: We firmly believe that openly

identifying and analyzing security vulnerabilities in LLMs is

essential for developing more robust and secure systems. Our

work targets the research community and model developers,

aiming to raise awareness of potential backdoor threats and

inform the design of effective defenses.

• Use of Public Resources and Neutral Triggers: All ex-

periments are conducted using verified public datasets and

properly licensed LLMs. Moreover, the triggers used in our

experiments are carefully designed to remain culturally neu-

tral, avoiding the inclusion of sensitive or offensive content.

• Commitment Against Misuse: We do not condone, pro-

mote, or facilitate the deployment or distribution of back-

doored LLMs for malicious purposes. Our work is strictly

intended to advance the understanding of LLM vulnerabili-

ties, with the ultimate goal of enhancing their security, safety,

and reliability.

Through this research, we aim to make a positive contribu-

tion to the field of security in LLM backdoor attacks, assisting

developers in fostering the development of robust and secure

LLM systems.

Open Science

To ensure open science policy compliance, all artifacts uti-

lized in this work are publicly accessible and strictly intended

for research purposes. The code of EmbedX is available on

Zenodo (https://doi.org/10.5281/zenodo.15609883) under the

MIT License to ensure transparency, reproducibility, and fa-

cilitate further research in defending against LLM backdoor

attacks. Meanwhile, we have carefully reviewed the docu-

mentation of models and datasets to confirm that they do not

contain sensitive information or violate protection policies.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, and et al. Ilge Akkaya. Gpt-4 technical report.

CoRR abs/2303.08774, 2023.

[2] Meta. Llama2. https://www.llama.com/llama2/,

2023.

[3] Meta. Llama3. https://llama.meta.com/llama3/,

2024.

[4] Gemma2-9b. https://huggingface.co/google/

gemma-2-9b-it, 2024.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-

lakantan, Pranav Shyam, Girish Sastry, Askell, et al. Lan-

guage models are few-shot learners. In NeurIPS, 2020.

[6] Biao Zhang, Barry Haddow, and Alexandra Birch.

Prompting large language model for machine transla-

tion: A case study. In ICML, 2023.

[7] Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Pan, and

Lidong Bing. Sentiment analysis in the era of large

language models: A reality check. In NAACL, 2024.

[8] Poe. https://poe.com/.

[9] Ollama. https://ollama.com/.

[10] Alexander Wan, Eric Wallace, Sheng Shen, and Dan

Klein. Poisoning language models during instruction

tuning. In ICLR, 2023.

[11] Rui Zhang, Hongwei Li, Rui Wen, Wenbo Jiang, Yuan

Zhang, Michael Backes, Yun Shen, and Yang Zhang.

Instruction backdoor attacks against customized llms.

In USENIX Security, 2024.

USENIX Association 34th USENIX Security Symposium 255

https://doi.org/10.5281/zenodo.15609883
https://www.llama.com/llama2/
https://llama.meta.com/llama3/
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/google/gemma-2-9b-it
https://poe.com/
https://ollama.com/

[12] Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng

Tang, Hai Wang, Vijay Srinivasan, Xiang Ren, and

Hongxia Jin. Backdooring instruction-tuned large lan-

guage models with virtual prompt injection. In NAACL,

2024.

[13] Guangyu Shen, Siyuan Cheng, Zhuo Zhang, Guanhong

Tao, Kaiyuan Zhang, Hanxi Guo, Lu Yan, Xiaolong Jin,

Shengwei An, Shiqing Ma, et al. Bait: Large language

model backdoor scanning by inverting attack target. In

IEEE S&P, 2024.

[14] Jiawei Zhou, Yixuan Zhang, Qianni Luo, Andrea G

Parker, and Munmun De Choudhury. Synthetic lies:

Understanding ai-generated misinformation and evalu-

ating algorithmic and human solutions. In ACM CHI,

2023.

[15] Han Wang, Ming Shan Hee, Md Rabiul Awal, Kenny

Tsu Wei Choo, and Roy Ka-Wei Lee. Evaluating gpt-3

generated explanations for hateful content moderation.

In IJCAI, 2023.

[16] Jiashu Xu, Mingyu Ma, Fei Wang, Chaowei Xiao, and

Muhao Chen. Instructions as backdoors: Backdoor vul-

nerabilities of instruction tuning for large language mod-

els. In NAACL, 2024.

[17] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth

Garg. Badnets: Identifying vulnerabilities in the ma-

chine learning model supply chain. arXiv preprint

arXiv:1708.06733, 2017.

[18] Evan Hubinger, Carson Denison, Jesse Mu, Mike Lam-

bert, Meg Tong, Monte MacDiarmid, Tamera Lan-

ham, Daniel M Ziegler, Tim Maxwell, Newton Cheng,

et al. Sleeper agents: Training deceptive llms

that persist through safety training. arXiv preprint

arXiv:2401.05566, 2024.

[19] Keita Kurita, Paul Michel, and Graham Neubig. Weight

poisoning attacks on pre-trained models. In ACL, 2020.

[20] Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren,

Xu Sun, and Bin He. Be careful about poisoned word

embeddings: Exploring the vulnerability of the embed-

ding layers in nlp models. In NAACL, 2021.

[21] Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and

Min Yang. Hidden trigger backdoor attack on nlp mod-

els via linguistic style manipulation. In USENIX Secu-

rity, 2022.

[22] Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng

Tang, Hai Wang, Vijay Srinivasan, Xiang Ren, and

Hongxia Jin. Backdooring instruction-tuned large lan-

guage models with virtual prompt injection. In NAACL,

2024.

[23] Hugging face hub. https://huggingface.co/.

[24] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,

Christopher D. Manning, Andrew Y. Ng, and Christo-

pher Potts. Recursive deep models for semantic com-

positionality over a sentiment treebank. In EMNLP,

2013.

[25] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan

Huang, Andrew Y. Ng, and Christopher Potts. Learning

word vectors for sentiment analysis. In ACL, 2011.

[26] Keita Kurita, Paul Michel, and Graham Neubig. Weight

poisoning attacks on pretrained models. In ACL, 2010.

[27] Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang,

Junlin Wu, and Yi-Shin Chen. Carer: Contextualized af-

fect representations for emotion recognition. In EMNLP,

2018.

[28] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann

Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,

and Tatsunori B. Hashimoto. Stanford alpaca: An

instruction-following llama model. https://github.

com/tatsu-lab/stanford_alpaca, 2023.

[29] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and

Luke Zettlemoyer. Qlora: Efficient finetuning of quan-

tized llms. In NeurIPS, 2023.

[30] Bloom-7b. https://huggingface.co/bigscience/

bloom-7b1, 2022.

[31] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,

Mantas Mazeika, Dawn Song, and Jacob Steinhardt.

Measuring massive multitask language understanding.

In ICLR, 2021.

[32] Hai Huang, Zhengyu Zhao, Michael Backes, Yun Shen,

and Yang Zhang. Composite backdoor attacks against

large language models. In NAACL, 2024.

[33] Leo Schwinn, David Dobre, Gauthier Gidel So-

phie Xhonneux, and Stephan Gunnemann. Soft prompt

threats: Attacking safety alignment and unlearning in

open-source llms through the embedding space. In

NeurIPS, 2024.

[34] Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan

Liu, and Maosong Sun. Onion: A simple and effective

defense against textual backdoor attacks. In EMNLP,

2021.

[35] Hengzhi Pei, Jinyuan Jia, Wenbo Guo, Bo Li, and Dawn

Song. Textguard: Provable defense against backdoor

attacks on text classification. In NDSS, 2024.

256 34th USENIX Security Symposium USENIX Association

https://huggingface.co/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/bigscience/bloom-7b1
https://huggingface.co/bigscience/bloom-7b1

[36] Yi Zeng, Weiyu Sun, Tran Ngoc Huynh, Bo Li

Dawn Song, , and Ruoxi Jia. Beear: Embedding-based

adversarial removal of safety backdoors in instruction-

tuned language models. In EMNLP, 2024.

[37] Hammond Pearce, Benjamin Tan, Baleegh Ahmad,

Ramesh Karri, and Brendan Dolan-Gavitt. Examining

zero-shot vulnerability repair with large language mod-

els. In IEEE S&P, 2023.

[38] Jingxuan He and Martin Vechev. Large language models

for code: Security hardening and adversarial testing. In

ACM CCS, 2023.

[39] Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying

Zhang, Zefeng Li, Haoyu Wang, Tianwei Zhang, and

Yang Liu. Masterkey: Automated jailbreaking of large

language model chatbots. In ISOC NDSS, 2024.

[40] Jiahao Yu, Xingwei Lin, Zheng Yu, and Xinyu Xing.

Llm-fuzzer: Scaling assessment of large language model

jailbreaks. In USENIX Security, 2024.

[41] Jiawen Shi, Zenghui Yuan, Yinuo Liu, Yue Huang,

Pan Zhou, Lichao Sun, and Neil Zhenqiang Gong.

Optimization-based prompt injection attack to llm-as-a-

judge. In ACM CCS, 2024.

[42] Tian Dong, Minhui Xue, Guoxing Chen, Rayne Holland,

Shaofeng Li, Yan Meng, Zhen Liu, and Haojin Zhu. The

philosopher’s stone: Trojaning plugins of large language

models. In NDSS, 2025.

[43] Nicholas Carlini and Andreas Terzis. Poisoning and

backdooring contrastive learning. In ICLR, 2022.

[44] Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong.

Badencoder: Backdoor attacks to pre-trained encoders

in self-supervised learning. In IEEE S&P, 2022.

[45] Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing

Chen, Jie Shi, Chengfang Fang, Jianwei Yin, and Ting

Wang. Backdoor pre-trained models can transfer to all.

In ACM CCS, 2021.

[46] Yeonjoon Lee, Kai Chen, Guozhu Meng, Peizhuo Lv,

et al. Aliasing backdoor attacks on pre-trained models.

In USENIX Security, 2023.

[47] Qian Lou, Yepeng Liu, and Bo Feng. Trojtext: Test-time

invisible textual trojan insertion. In ICLR, 2023.

[48] Nikhil Kandpal, Matthew Jagielski, Florian Tramèr, and

Nicholas Carlini. Backdoor attacks for in-context learn-

ing with language models. In AdvML-Frontiers, 2023.

[49] Xuanli He, Jun Wang, Qiongkai Xu, Pasquale Minervini,

Pontus Stenetorp, Benjamin I. P. Rubinstein, and Trevor

Cohn. Tuba: Cross-lingual transferability of backdoor

attacks in llms with instruction tuning, 2024.

[50] Roei Schuster, Yoav Meri Tal Schuster, , and Vitaly

Shmatikov. Humpty dumpty: Controlling word mean-

ings via corpus poisoning. In IEEE S&P, 2020.

[51] Ziqing Yang, Zheng Li Xinlei He, Mathias Humbert

Michael Backes, Pascal Berrang, and Yang Zhang. Data

poisoning attacks against multimodal encoders. In

ICML, 2023.

USENIX Association 34th USENIX Security Symposium 257

	Introduction
	Preliminaries
	Large Language Models

	Rethinking LLM Backdoor Attacks
	Threat Model
	EmbedX: Cross-Trigger Backdoor Attack
	Weaponizing Embeddings as Soft Trigger

	Latent Adversarial Backdoor Injection
	Backdoor Activation via Soft Trigger
	Experiments
	Experimental Setup

	Attack Effectiveness and Efficiency
	Stealthiness Analysis
	Ablation Study
	Potential Defenses
	Discussion and Limitations
	Related Work
	Conclusion

