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HETEROSAMPLE: Meta-Path Guided Sampling for
Heterogeneous Graph Representation Learning
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Abstract—The rapid expansion of Internet of Things (IoT) has
resulted in vast, heterogeneous graphs that capture complex inter-
actions among devices, sensors, and systems. Efficient analysis
of these graphs is critical for deriving insights in IoT scenarios,
such as smart cities, industrial IoT, and intelligent transportation
systems. However, the scale and diversity of IoT-generated data
present significant challenges, and existing methods often struggle
with preserving the structural integrity and semantic richness of
these complex graphs. Many current approaches fail to maintain
the balance between computational efficiency and the quality
of the insights generated, leading to potential loss of critical
information necessary for accurate decision-making in IoT appli-
cations. We introduce HETEROSAMPLE, a novel sampling method
designed to address these challenges by preserving the structural
integrity, node and edge type distributions, and semantic patterns
of IoT-related graphs. HETEROSAMPLE works by incorporating
the novel top-leader selection, balanced neighborhood expansion,
and meta-path guided sampling strategies. The key idea is
to leverage the inherent heterogeneous structure and semantic
relationships encoded by meta-paths to guide the sampling
process. This approach ensures that the resulting subgraphs are
representative of the original data while significantly reducing
computational overhead. Extensive experiments demonstrate that
HETEROSAMPLE outperforms state-of-the-art methods, achiev-
ing up to 15% higher F1 scores in tasks, such as link prediction
and node classification, while reducing runtime by 20%. These
advantages make HETEROSAMPLE a transformative tool for
scalable and accurate IoT applications, enabling more effective
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and efficient analysis of complex IoT systems, ultimately driving
advancements in smart cities, industrial IoT, and beyond.

Index Terms—Graph representation learning, graph sampling,
heterogeneous graphs, node embedding.

I. INTRODUCTION

THE INTERNET of Things (IoT) has revolutionized
the way we model and interact with complex real-

world systems, generating vast, heterogeneous graphs where
diverse types of nodes and edges represent the intricate
relationships between interconnected devices, sensors, and
systems [4], [21], [34]. These heterogeneous graphs have
become essential tools for IoT applications, such as smart
cities, industrial automation, and intelligent transportation,
where understanding the complex interactions between entities
is critical [14], [23], [32], [39]. Effective representation learn-
ing of these graphs is vital for a variety of downstream tasks,
including node classification, link prediction, and anomaly
detection, which are crucial in maintaining the functionality
and security of IoT networks [3], [15], [20], [38]. However, the
scale and complexity of IoT-generated heterogeneous graphs
present significant challenges, particularly in terms of com-
putational efficiency and scalability. Existing graph sampling
techniques aim to address these challenges by extracting
representative subgraphs to reduce size [6], [33], [40], [41], but
they often struggle to preserve the rich semantic and structural
information necessary for accurate IoT data analysis.

Existing Work: Existing approaches to heterogeneous graph
sampling in IoT scenarios can be broadly classified into two
main categories: 1) random walk (RW)-based methods and
2) node-wise sampling methods. RW-based methods, such
as meta-path-based RWs [7], [22] and heterogeneous graph
attention networks (HGATs) [35], are designed to traverse the
graph along various meta-paths, capturing the diverse seman-
tic and structural information embedded within the graph.
These methods have been effective in several contexts but
often encounter significant computational complexity, making
them less suitable for the large-scale and dynamic nature of
IoT-generated data. On the other hand, node-wise sampling
methods, like HGSampling [16] and HetGNN [2], focus
on selecting nodes based on their importance or centrality
measures, attempting to preserve the key structural features of
the graph. HGSampling uses a budget-based strategy to select
informative nodes, while HetGNN employs a heterogeneous
graph neural network to learn detailed node representations.
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Research Gap: Despite the advancements these methods
offer, significant challenges remain, particularly in the context
of IoT applications. RW-based methods often struggle to
maintain the global properties of the graph, which are essential
for accurately modeling the interconnected systems typical in
IoT environments. Similarly, node-wise sampling approaches,
while effective in preserving certain structural features, often
fall short in capturing the complex interactions between differ-
ent node and edge types. This limitation becomes particularly
pronounced in IoT scenarios, where the accurate representation
of intricate relationships is crucial for tasks, such as anomaly
detection, predictive maintenance, and network optimization.
These gaps highlight the need for more robust and efficient
sampling methods that can better preserve the structural
integrity and semantic richness of heterogeneous graphs in IoT
contexts.

HETEROSAMPLE: To address the limitations of existing
methods, we propose HETEROSAMPLE, a novel determinis-
tic sampling method specifically designed for heterogeneous
graphs. HETEROSAMPLE is crafted to preserve both the
structural and semantic properties of these graphs while
maintaining computational efficiency and scalability. The core
idea of HETEROSAMPLE is to utilize a deterministic approach
that leverages both local and global information to select rep-
resentative nodes within the graph. Unlike traditional methods
that depend on RWs or node-wise sampling-based solely on
centrality measures, HETEROSAMPLE employs a three-step
process. First, it identifies the most influential nodes for each
node type by analyzing their centrality scores, ensuring a com-
prehensive representation of the graph’s heterogeneity. Second,
it expands the neighborhoods of these selected top-leaders in
a balanced manner, ensuring a proportional representation of
different node types within the local context. Lastly, it incor-
porates meta-path guided expansion to capture and preserve
the semantic relationships among nodes, leading to a more
informed and effective sampling process. Through these steps,
HETEROSAMPLE aims to maintain the essential properties
of the heterogeneous graph while significantly reducing its
size, striking an optimal balance between effectiveness and
efficiency.

HETEROSAMPLE provides several advantages over existing
methods. First, it effectively preserves the structural properties
and inherent heterogeneity of the original graph by considering
both node importance and a balanced representation of various
node types. Second, HETEROSAMPLE captures the semantic
relationships among nodes by leveraging meta-paths during
the sampling process, allowing for a more comprehensive and
accurate representation of the graph. Lastly, HETEROSAMPLE

is both computationally efficient and scalable, focusing on
selecting representative nodes and their immediate neigh-
borhoods without relying on costly global computations.
These advantages make HETEROSAMPLE a powerful tool
for analyzing large-scale heterogeneous graphs, particularly in
data-intensive fields, such as IoT.

Integrating top-leader selection with meta-path-based
expansion presents several technical challenges, particularly
in balancing local and global graph features. Top-leader
selection focuses on identifying influential nodes based on

local connectivity, while meta-path-based expansion aims to
capture the broader semantic relationships among diverse node
types. During implementation, we faced challenges, such as
ensuring that the selected top-leaders effectively represented
local neighborhoods while also preserving the overall semantic
integrity of the graph. To address these issues, we developed a
hybrid approach that leverages the strengths of both methods,
allowing for a comprehensive sampling strategy that maintains
both structural characteristics and rich semantic patterns. By
tackling these technical challenges, our method not only
enhances the representativeness and quality of the sampled
subgraphs but also demonstrates significant robustness in the
field of heterogeneous graph analysis.

Our main contributions are summarized as follows.
1) We propose HETEROSAMPLE, a novel deterministic

sampling method for heterogeneous graphs that effec-
tively preserves the structural and semantic properties of
the original graph.

2) We design a top-leader selection strategy identifying the
most influential nodes of each node type, a balanced
neighborhood expansion (BNE) approach maintaining
a balanced representation of different node types, and
a meta-path guided expansion to capture the semantic
relationships among nodes.

3) We conduct extensive evaluations on three real-world
heterogeneous graph datasets to evaluate the effec-
tiveness of HETEROSAMPLE in preserving the key
properties of the original graph and its performance in
downstream tasks of link prediction. We also compare
HETEROSAMPLE with state-of-the-art baselines and
show its superiority in terms of both effectiveness and
efficiency.

II. PROBLEM FORMULATION

In this section, we define the problem of sampling hetero-
geneous graphs and introduce the notations and definitions.

A. Definitions

Definition 1 (Heterogeneous Graph): As illustrated in
Fig. 1, a heterogeneous graph consists of various types of
nodes and edges, defined as a graph G = (V,E, φ, ψ). Here,
V represents the set of nodes, while E denotes the set of edges.
The mapping functions φ:V → A and ψ :E → R categorize
nodes and edges into their respective types. Specifically, A and
R represent the sets of node types and edge types, respectively.
We denote the set of node types as A = {A1,A2, . . . ,Am}
and the set of edge types as R = {R1,R2, . . . ,Rn}. The
interactions among these diverse types are critical for our
sampling process, as they allow us to effectively capture the
complex relationships encoded in the graph, thereby enhancing
the representativeness of the sampled subgraphs.

Definition 2 (Meta-Path): A meta-path P is defined as a

path in the form of A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, which

describes a composite relation between node types A1 and
Al+1, where Ai ∈ A and Ri ∈ R are node types and edge
types, respectively.
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Fig. 1. Illustration of heterogeneous graph.

Fig. 2. Workflow of HETEROSAMPLE.

Definition 3 (Edge Type Importance): The edge type impor-
tance matrix W = (wij)m×m assigns an importance weight
to each edge type, where wij represents the importance of
the edge type connecting node types Ai and Aj. In practice,
these weights can be determined using domain knowledge or
through frequency analysis of the interactions in the dataset.
For instance, if certain edge types consistently connect highly
influential node types, they may be assigned higher weights
based on their observed frequency of occurrence and signif-
icance in previous analyses. The importance weights satisfy
the condition

∑m
i=1

∑m
j=1 wij = 1, ensuring that the weights

are normalized. It is important to note that the importance of
edge types may vary across different datasets, which could
affect the generalizability of the method. Thus, adapting the
weighting strategy based on specific dataset characteristics is
essential for optimizing performance.

Definition 4 (Edge Type Importance): The edge type impor-
tance matrix W = (wij)m×m assigns an importance weight to
each edge type, where wij represents the importance of the
edge type connecting node types Ai and Aj. The importance
weights satisfy

∑m
i=1

∑m
j=1 wij = 1.

Definition 5 (Meta-Path Importance): The meta-path
importance vector β = (β1, β2, . . . , βq) assigns an importance
weight to each meta-path, where βi represents the importance
of meta-path Pi ∈ P . The importance weights satisfy∑q

i=1 βi = 1.

B. Problem Statement

Given a heterogeneous graph G = (V,E, φ, ψ), the goal
of heterogeneous graph sampling is to select a subgraph

S = (VS,ES), where VS ⊆ V and ES ⊆ E, that preserves
key properties of G, such as node type distribution, edge
type distribution, meta-path-based patterns, and clustering
structure, while minimizing the size of S. To achieve this,
HETEROSAMPLE leverages node type importance, edge type
importance, and meta-path importance to guide the sampling
process, ensuring that the selected subgraph effectively cap-
tures the structural and semantic characteristics of the original
graph. The proposed algorithm addresses the challenges of
sampling heterogeneous graphs by maintaining their inherent
properties and providing a compact representation suitable for
downstream tasks.

III. DESIGN OF HETEROSAMPLE

In this section, we present the overview of
HETEROSAMPLE, and detail the design of HETEROSAMPLE.

A. Overview

As illustrated in Fig. 2, HETEROSAMPLE consists of three
main steps: 1) top-leader selection; 2) expansion strategies;
and 3) meta-path-based sampling. In the top-leader selection
step, it identifies influential nodes of each type based on
weighted importance scores that consider both node degree
and type significance. The expansion strategies, including
BNE and meta-path guided neighborhood expansion (MGNE),
add peripheral nodes from each type in a balanced manner
and prioritize nodes that form important meta-path patterns.
The meta-path-based sampling further refines the graph by
capturing semantic relationships between different node types.
By integrating these strategies, HETEROSAMPLE effectively
preserves the rich semantics and structural properties of the
original graph while reducing its size, ensuring balanced
representation and capturing essential characteristics. This
comprehensive framework makes HETEROSAMPLE suitable
for various downstream tasks, such as node classification, link
prediction, and community detection in diverse graph mining
applications.

B. Top-Leader Selection

In heterogeneous graphs, different node types may have
varying importance within the overall graph structure.
Therefore, it is crucial to consider both node degree and
node type importance when selecting top-leader nodes. By
initializing top-leaders based on a weighted combination of
these factors, we aim to capture the most influential nodes
within each node type, ensuring a diverse and representative
initial sample.

Step 1 (Define Node Type Importance): We introduce a
node type importance vector α = (α1, α2, . . . , αm), where
αi represents the importance weight of node type Ai. These
importance weights can be determined through domain knowl-
edge or learned from the graph structure using techniques,
such as node embedding or centrality measures. The node type
importance vector satisfies the condition

∑m
i=1 αi = 1.

Step 2 (Calculate Weighted Node Importance Score): For
each node v ∈ V , we calculate a weighted node importance
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score that combines node degree and node type importance.
The weighted node importance score I(v) is defined as

I(v) = αφ(v) · deg(v) (1)

where deg(v) is the degree of node v, and αφ(v) is the
importance weight of the node type φ(v) to which node v
belongs.

Step 3 (Select Top-Leaders for Each Node Type): For each
node type Ai ∈ A, we select the top-k nodes with the highest
weighted node importance scores as the top-leaders. The value
of k can be determined based on several factors, including the
desired sample size, the number of node types, and the overall
graph density. Additionally, we may employ thresholds or
heuristics to ensure that only nodes meeting specific criteria for
influence are selected, which helps balance the representation
across various node types.

Step 4 (Form Initial Sample): The initial sample S is formed
by including all selected top-leaders from each node type.
Formally, the initial sample is defined as

S =
m⋃

i=1

Li. (2)

The size of the initial sample is |S| = m · k, where m is
the number of node types and k is the number of top-leaders
selected per node type.

By initializing the top-leaders based on the weighted node
importance score, we ensure that the most influential nodes
within each type are included in the initial sample, effectively
capturing both local connectivity through node degree and
the global significance of different node types. This top-
leader selection lays the groundwork for subsequent expansion
strategies, which grow the sample by incorporating peripheral
nodes around the selected leaders. The choice of top-leaders
is critical for determining the quality and representativeness
of the final sampled graph. Future evaluations will explore the
impact of varying k on performance, providing insights for
optimizing the top-leader selection process.

C. Expansion Strategies

After initializing the top-leader nodes for each node type,
the next step is to expand the sample by adding peripheral
nodes around the top-leaders. The intuition is to capture the
local neighborhood structure and the semantic relationships
between different node types. By incorporating node types and
edge types into the expansion process, we can ensure that
the sampled graph preserves the heterogeneous nature of the
original graph. We design two expansion strategies: 1) BNE
and 2) MGNE. Both strategies utilize the edge type importance
matrix to prioritize the selection of peripheral nodes based on
the importance of the connecting edge types.

Step 1 (Define Edge Type Importance): We introduce an
edge type importance matrix W = (wij)m× m, where wij
represents the importance weight of the edge type connect-
ing node types Ai and Aj. The importance weights can be
determined based on domain knowledge or learned from the
graph structure using techniques, such as edge embedding
or frequency analysis. The edge type importance matrix

is symmetric, i.e., wij = wji, and satisfies the condition∑m
i=1

∑m
j=1 wij = 1.

Step 2 (BNE): For each top-leader node v ∈ S and each
connected node type Ai, we calculate the number of peripheral
nodes to be added as ni = � |NAi (v)|∑m

j=1 |NAj (v)|
· δ�, where NAi(v)

is the set of neighboring nodes of v belonging to node type
Ai, and δ is the expansion factor determining the number of
peripheral nodes to be added per top-leader node. BNE is
essential because it ensures that node types are proportionally
represented in the expanded neighborhood, preventing biases
that may arise from uneven sampling. Without BNE, certain
node types could be underrepresented, leading to a loss of
critical information and skewing the results of downstream
tasks. We then select ni peripheral nodes from NAi(v) based
on the importance of the connecting edge type, with the
probability of selecting a peripheral node u ∈ NAi(v) being
proportional to the importance weight wφ(v),i of the edge type
connecting v and u. This method contrasts with purely random
expansion strategies, which may neglect the structural signif-
icance of node types, potentially compromising the richness
of the sampled graph. The selected peripheral nodes are then
added to the sample S.

For each top-leader node v ∈ S and each connected node
type Ai, we calculate the number of peripheral nodes to be
added as ni = � |NAi (v)|∑m

j=1 |NAj (v)|
· δ�, where NAi(v) is the set of

neighboring nodes of v belonging to node type Ai, and δ is the
expansion factor determining the number of peripheral nodes
to be added per top-leader node. We then select ni peripheral
nodes from NAi(v) based on the importance of the connecting
edge type, with the probability of selecting a peripheral node
u ∈ NAi(v) being proportional to the importance weight wφ(v),i
of the edge type connecting v and u. The selected peripheral
nodes are added to the sample S.

Step 3 (MGNE): For each top-leader node v ∈ S, we
expand the sample by identifying the set of meta-paths Pv
originating from v, considering a predefined maximum length
l. We then calculate the importance score IP for each meta-path
P ∈ Pv as IP = ∏

i = 1lwφ(vi), φ(vi+1), where vi and vi+1
are consecutive nodes in the meta-path P, and wφ(vi),φ(vi+1)

is the importance weight of the edge type connecting their
corresponding node types. The top-k meta-paths with the
highest importance scores from Pv are selected, and for each
selected meta-path P, the peripheral nodes along the meta-
path are added to the sample S. This approach prioritizes the
selection of peripheral nodes based on their contribution to
completing high-importance meta-paths in the neighborhood
of the top-leader node.

D. Meta-Path-Based Sampling

In heterogeneous graphs, meta-paths capture the semantic
relationships between different node types. By incorporating
meta-path-based sampling into the expansion process, we
ensure that the sampled graph preserves important semantic
patterns and multihop relationships between nodes of dif-
ferent types. This sampling process prioritizes the selection
of nodes and edges that form significant meta-path patterns,
thus capturing the rich semantics of the heterogeneous graph.
Meta-path-based sampling is integrated with our expansion
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strategies, BNE and MGNE, to ensure a comprehensive
representation of the heterogeneous graph.

Step 1 (Define Meta-Paths): A meta-path P is defined as

a sequence of node types and edge types, denoted as A1
R1−→

A2
R2−→ . . .

Rl−→ Al+1, where Ai ∈ A and Ri ∈ R. Meta-paths
capture the semantic relationships between different node
types and provide a means to model multihop relationships
in the heterogeneous graph. We define a set of relevant
meta-paths P = {P1,P2, . . . ,Pq}, which can be determined
based on domain knowledge, expert insights, or automatically
discovered using techniques, such as frequent pattern mining
or meta-path embedding.

Step 2 (Assign Importance Weights to Meta-Paths): We
assign importance weights β = (β1, β2, . . . , βq) to each meta-
path Pi ∈ P . The importance weights can be calculated based
on factors, such as the frequency of each meta-path in the
graph, its relevance to the specific application, or domain
expertise. Techniques like meta-path ranking and meta-path
similarity measures can be employed to determine these
weights quantitatively. The importance weights satisfy the
condition

∑q
i=1 βi = 1, ensuring that they are normalized.

Step 3 (Meta-Path Guided Global Sampling): In the meta-
path-based sampling step, we capture the global semantic
relationships between different node types by performing
guided walks along important meta-paths. For each top-leader
node v ∈ S, we first identify the set of meta-paths Pv ⊆ P
that originate from v. For each meta-path Pi ∈ Pv, we
calculate its importance score as IPi = βi ·∏l

j=1 wφ(vj),φ(vj+1),
where vj and vj+1 are consecutive nodes in Pi, wφ(vj),φ(vj+1)

is the importance weight of the edge type connecting their
corresponding node types, and βi is the importance weight
of Pi. We then select the top-k meta-paths with the highest
importance scores from Pv and perform guided walks starting
from v along each selected meta-path, adding the encountered
nodes and edges to the sample S. This process is repeated for a
predefined number of iterations or until a desired sample size is
achieved, ensuring that the sampled graph captures significant
global semantic patterns and multihop relationships.

The meta-path-guided global sampling ensures that the
sampled graph effectively preserves important global semantic
patterns and multihop relationships between different node
types. By prioritizing the selection of nodes and edges that
form high-importance meta-paths, we can maintain the rich
semantics of the heterogeneous graph in the sampled subgraph.
This sampling step complements the expansion strategies
(BNE and MGNE) by providing an additional layer of guid-
ance based on the global semantic relationships encoded in
meta-paths. Incorporating domain knowledge and leveraging
the semantics of meta-paths enhances the expressiveness
and representativeness of the sampled graph, allowing it to
capture both local structural properties and global seman-
tic patterns. Algorithm 1 presents the detailed process of
HETEROSAMPLE.

IV. PERFORMANCE EVALUATION

A. Setup

Dataset: We use the following datasets of heterogeneous
graph, with the statistics presented in Table I.

Algorithm 1 HETEROSAMPLE

Require: Heterogeneous graph G = (V,E, φ, ψ), node types A,
edge types R, node type importance vector α, edge type impor-
tance matrix W, meta-paths P , meta-path importance weights
β, number of top-leaders per node type k, expansion factor δ,
maximum meta-path length l

Ensure: Sampled graph S
1: Initialize S← ∅
2: // Step 1: Top-leader selection
3: for each node type Ai ∈ A do
4: Li ← ∅
5: for each node v ∈ V such that φ(v) = Ai do
6: Compute weighted node importance score I(v) = αi ·deg(v)
7: Li ← Li ∪ {(v, I(v))}
8: end for
9: Sort Li in descending order of I(v)

10: Select top-k nodes from Li and add them to S
11: end for
12: // Step 2: Expansion strategies
13: for each top-leader node v ∈ S do
14: for each node type Ai ∈ A do
15: NAi(v)← {u ∈ V \ S:(v, u) ∈ E ∧ φ(u) = Ai}
16: ni ←

⌊ |NAi (v)|∑m
j=1 |NAj (v)|

· δ
⌋

17: Select ni peripheral nodes from NAi(v) based on edge type
importance wφ(v),i and add them to S

18: end for
19: Pv ← meta-paths originating from v with maximum length l
20: for each meta-path P ∈ Pv do
21: Compute importance score IP =∏l

i=1 wφ(vi),φ(vi+1)
22: end for
23: Select top-k meta-paths from Pv with highest importance

scores
24: for each selected meta-path P do
25: Add peripheral nodes along P to S
26: end for
27: end for
28: // Step 3: Meta-path-based sampling
29: for each top-leader node v ∈ S do
30: Pv ← meta-paths originating from v
31: for each meta-path Pi ∈ Pv do
32: Compute importance score IPi = βi ·∏l

j=1 wφ(vj),φ(vj+1)

33: end for
34: Select top-k meta-paths from Pv with highest importance

scores
35: for each selected meta-path Pi do
36: Perform guided walk along Pi starting from v
37: Add nodes and edges encountered during the guided walk

to S
38: end for
39: end for
40: return S

1) DBLP dataset is a subset of the DBLP bibliographic
network, which consists of 14 328 papers (P), 4057
authors (A), 20 conferences (C), and 8789 terms (T). The
heterogeneous graph is constructed with four node types:
Paper, Author, Conference, and Term, and three edge
types: Paper–Author, Paper–Conference, and Paper–
Term. Each author node is associated with a feature
vector represented by a bag-of-words model derived
from the keywords of their publications. The authors
are categorized into four research areas: 1) database;
2) data mining; 3) machine learning; and 4) information
retrieval, based on the conferences in which they have
published. To evaluate HETEROSAMPLE on this dataset,
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TABLE I
DETAILED STATISTICS OF HETEROGENEOUS GRAPHS

we employ three meta-paths: {APA, APCPA, APTPA},
which capture the semantic relations between authors,
papers, conferences, and terms.

2) ACM dataset is derived from papers published in
five prominent conferences, such as KDD, SIGMOD,
SIGCOMM, MobiCOMM, and VLDB. The heteroge-
neous graph comprises 3025 papers (P), 5835 authors
(A), and 56 subjects (S), with three node types, such
as Paper, Author, and Subject, and two edge types,
such as Paper–Author and Paper–Subject. The papers
are categorized into three research areas: 1) database;
2) wireless communication; and 3) data mining, based
on the conferences in which they were published.
Each paper node is associated with a feature vector
represented by a bag-of-words model derived from the
keywords of this article. To assess the performance of
HETEROSAMPLE on this dataset, we utilize two meta-
paths: {PAP, PSP}, which capture the semantic relations
between papers, authors, and subjects.

3) IMDB dataset is a subset of the Internet Movie Database,
containing 4780 movies (M), 5841 actors (A), and 2269
directors (D). The heterogeneous graph is constructed
with three node types, such as Movie, Actor, and
Director, and two edge types, such as Movie–Actor
and Movie–Director. Each movie node is associated
with a feature vector represented by a bag-of-words
model derived from the plots of the movies. The
movies are categorized into three genres, such as Action,
Comedy, and Drama. To evaluate the effectiveness of
HETEROSAMPLE on this dataset, we employ two meta-
paths: {MAM, MDM}, which capture the semantic
relations between movies, actors, and directors.

Evaluation Metrics: To comprehensively assess the quality
of the sampled graphs and the efficiency of the sampling meth-
ods, we employ the metrics, node type distribution similarity
(NTDS), edge type distribution similarity (ETDS), meta-path
preservation ratio (MPR), graph reconstruction error (GRE),
runtime, precision, recall, and F1 score.

1) NTDS measures the similarity between the node type
distributions of the original and sampled graphs using
the Kullback–Leibler (KL) divergence. Let pn

i and qn
i

denote the probability of node type i in the original
graph and the sampled graph, respectively. The NTDS
is calculated as

NTDS = −
N∑

i=1

pn
i log

pn
i

qn
i

(3)

where N is the total number of node types. A lower
NTDS value indicates a higher similarity between the
node type distributions, suggesting better preservation of
the node type distribution in the sampled graph.

2) ETDS evaluates the similarity between the edge type
distributions of the original and sampled graphs using
the KL divergence. Let pe

i and qe
i denote the probability

of edge type i in the original graph and the sampled
graph, respectively. The ETDS is calculated as

ETDS = −
M∑

i=1

pe
i log

pe
i

qe
i

(4)

where M is the total number of edge types. A lower
ETDS value indicates a higher similarity between the
edge type distributions, indicating better preservation of
the edge type distribution in the sampled graph.

3) MPR: The MPR calculates the ratio of preserved meta-
paths in the sampled graph compared to the original
graph. Let MPoriginal and MPsampled denote the sets of
meta-paths in the original graph and the sampled graph,
respectively. The MPR is calculated as

MPR = |MPoriginal ∩MPsampled|
|MPoriginal| (5)

where | · | represents the cardinality of a set. A higher
MPR value indicates better preservation of meta-paths
in the sampled graph, suggesting that the sampled
graph captures the important semantic patterns and
relationships encoded by the meta-paths.

4) GRE measures the reconstruction error between the
original graph and the graph reconstructed from the
sampled graph using the node embeddings learned by a
graph embedding method. Let Aoriginal and Areconstructed
denote the adjacency matrices of the original graph
and the reconstructed graph, respectively. The GRE is
calculated as

GRE = ||Aoriginal − Areconstructed||F
||Aoriginal||F (6)

where || · ||F represents the Frobenius norm of a matrix.
A lower GRE value indicates better reconstruction of the
original graph from the sampled graph, suggesting that
the sampled graph preserves the structural properties of
the original graph.

5) Sampling runtime of each method is evaluated their
computational efficiency. A lower runtime indicates
better computational efficiency of the sampling method,
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which is crucial for scalability and practicality when
dealing with large-scale heterogeneous graphs.

The NTDS and ETDS capture the similarity of node type
and edge type distributions, respectively, while the MPR
quantifies the preservation of important semantic patterns.
The GRE evaluates the structural similarity between the
original and reconstructed graphs, and the runtime measures
the computational efficiency. Besides, we also use precision,
recall, and F1 score to evaluate the performance of node
embedding.

The experimental procedure involves preprocessing the
DBLP, ACM, and IMDB datasets to construct heterogeneous
graphs and extract node types, edge types, and meta-paths.
HETEROSAMPLE and baseline methods, i.e., HGSampling,
are applied to obtain sampled graphs with varying sampling
ratios (10%–50%). The sampled graphs are evaluated using
NTDS, ETDS, MPR, and GRE metrics to measure the
preservation of node type distribution, edge type distribu-
tion, semantic patterns, and structural properties. Runtime is
recorded to assess computational efficiency. Experiments are
repeated multiple times, and average results are reported. The
experimental results are analyzed to answer the following
research questions.

RQ1: How does applying the sampled graph obtained by
HETEROSAMPLE to node embedding methods and down-
stream tasks perform compared to existing methods? RQ2: To
what extent does HETEROSAMPLE preserve the node type
distribution of the original heterogeneous graph in the sampled
graph, and how does it compare to existing sampling methods?
RQ3: How well does HETEROSAMPLE maintain the edge
type distribution of the original heterogeneous graph in the
sampled graph, and how does its performance compare to other
state-of-the-art sampling techniques? RQ4: How effectively
does HETEROSAMPLE capture and preserve the important
semantic patterns and relationships encoded by meta-paths
in the sampled graph, and how does it compare to baseline
methods in this regard? RQ5: How does the combination of
top-leader selection, expansion strategies (BNE and MGNE),
and meta-path-based sampling in HETEROSAMPLE impact
the quality of the sampled graph in terms of preserving
the structural properties and heterogeneous nature of the
original graph? RQ6: How does HETEROSAMPLE perform
in terms of computational efficiency and scalability when
applied to large-scale heterogeneous graphs, and how does it
compare to other state-of-the-art sampling methods in terms of
runtime?

B. RQ1: Performance in Node Embedding

To assess HETEROSAMPLE‘s efficacy in node embedding
and downstream tasks, we apply its sampled graph to multiple
node embedding methods, focusing on link prediction to eval-
uate the embeddings’ quality. We measure HETEROSAMPLE’s
performance in link prediction through precision, recall, and
F1 score, comparing these metrics against established node
embedding techniques. The comparative results are detailed in
Table II.

TABLE II
LINK PREDICTION PERFORMANCE (PRECISION/RECALL/F1-SCORE (%))

Results demonstrate the its effectiveness in capturing
the important relationships between nodes in the het-
erogeneous graph. Among the HETEROSAMPLE-enhanced
methods, HETEROSAMPLE + D-HetGNN achieves the high-
est F1 scores across all datasets, reaching 90.20%, 91.78%,
and 88.61% on DBLP, ACM, and IMDB, respectively.
This indicates that the combination of HETEROSAMPLE

with D-HetGNN effectively preserves the structural and
semantic properties of the original graph, enabling accu-
rate link prediction. HETEROSAMPLE + HGAT and
HETEROSAMPLE + MetaGraph2Vec also demonstrate
strong performance, consistently outperforming their corre-
sponding baseline methods. The superior performance of
HETEROSAMPLE-enhanced methods can be attributed to
HETEROSAMPLE‘s ability to preserve the heterogeneous
structure of the original graph during the sampling pro-
cess. By leveraging top-leader selection, BNE, and meta-path
guided expansion strategies, HETEROSAMPLE captures the
important relationships between nodes of different types,
enabling node embedding methods to learn more informative
and discriminative embeddings. Moreover, the combination
of HETEROSAMPLE with different node embedding methods
demonstrates its versatility and compatibility, making it a
valuable tool for heterogeneous graph mining tasks.

C. RQ2: Performance of Sampling Methods in Link
Prediction

To evaluate the impact of different sampling methods
on link prediction performance, we combine the sampled
graphs obtained by HETEROSAMPLE, TLS-e, TLS-i, and
deterministic sampling with various node embedding and
GNN methods, including Node2Vec, HGAT, D-HetGNN,
and MetaGraph2Vec. We measure the precision, recall,
and F1 score of these combinations on the DBLP, ACM,
and IMDB datasets. Figs. 3–5 present the link prediction
performance of different sampling methods combined with
node embedding and GNN methods.

The results in Table III demonstrate that the choice of
sampling method significantly impacts the link prediction
performance when combined with different node embedding
and GNN methods. HETEROSAMPLE consistently achieves
the highest F1 scores across all datasets, outperforming
TLS-e, TLS-i, and deterministic sampling. For example, on
the DBLP dataset, HETEROSAMPLE + D-HetGNN obtains
an F1 score of 90.20%, surpassing TLS-e + D-HetGNN
(83.30%), TLS-i + D-HetGNN (83.75%), and D-HetGNN
(Det.) + D-HetGNN (82.50%). The superior performance of
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Fig. 3. Precision under different methods.

Fig. 4. Recall under different methods.

HETEROSAMPLE can be attributed to its BNE and meta-
path guided expansion strategies, which effectively capture the
structural and semantic properties of the original heteroge-
neous graph. Among the node embedding and GNN methods,
D-HetGNN consistently achieves the highest F1 scores when
combined with any of the sampling methods, showcasing its
ability to capture complex interactions between different node
types. HGAT and MetaGraph2Vec also demonstrate compet-
itive performance, outperforming Node2Vec in most cases,
suggesting the benefits of incorporating attention mechanisms
and meta-path-based embeddings in heterogeneous graphs.
The experimental results highlight the importance of selecting
an appropriate sampling method and the effectiveness of
HETEROSAMPLE, D-HetGNN, HGAT, and MetaGraph2Vec
in link prediction tasks on heterogeneous graphs.

D. RQ3: Preservation of Node Type Distribution

To evaluate how well HETEROSAMPLE preserves the
node type distribution of the original heterogeneous graph
in the sampled graph, we measure the NTDS using the
KL divergence between the node type distributions of the
original and sampled graphs. Lower NTDS values indi-
cate better preservation of the node type distribution. We
compare HETEROSAMPLE with existing sampling meth-
ods, including TLS-e, TLS-i, and the deterministic sampling
used in D-HetGNN. Figs. 6–8 present the NTDS values for
HETEROSAMPLE and the baseline sampling methods on the

Fig. 5. F1 score under different methods.

TABLE III
SAMPLED GRAPH QUALITY UNDER DIFFERENT METHODS (%)

Fig. 6. NTDS under different methods using DBLP dataset.

DBLP, ACM, and IMDB datasets, with varying sampling ratios
(10%–50%).

The results demonstrate that HETEROSAMPLE effectively
preserves the node type distribution of the original het-
erogeneous graph in the sampled graph, outperforming the
baseline sampling methods across all datasets and sampling
ratios. As the sampling ratio increases from 10% to 50%,
the NTDS values for all methods decrease, indicating better
preservation of the node type distribution with larger sample
sizes. However, HETEROSAMPLE consistently achieves the
lowest NTDS values compared to TLS-e, TLS-i, and the
deterministic sampling used in D-HetGNN. For example, at
a sampling ratio of 30%, HETEROSAMPLE achieves NTDS
values of 0.011, 0.009, and 0.015 on the DBLP, ACM, and
IMDB datasets, respectively. In contrast, TLS-e obtains NTDS
values of 0.024, 0.020, and 0.030, while TLS-i yields 0.022,
0.018, and 0.027, and D-HetGNN (Det.) results in 0.019,
0.016, and 0.023 for the same datasets and sampling ratio.

The superior performance of HETEROSAMPLE in
preserving the node type distribution can be attributed to its
BNE strategy, which ensures a proportional representation of
different node types in the sampled graph. By considering
the node type importance and expanding the neighborhood
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Fig. 7. NTDS under different methods using ACM dataset.

Fig. 8. NTDS under different methods using IMDB dataset.

of top-leader nodes in a balanced manner, HETEROSAMPLE

captures the heterogeneous structure of the original graph
more effectively than the baseline methods.

Moreover, the meta-path guided expansion strategy in
HETEROSAMPLE further enhances the preservation of node
type distribution by considering the semantic relationships
between different node types. By incorporating meta-path
information during the sampling process, HETEROSAMPLE

ensures that the sampled graph retains the important structural
and semantic properties of the original graph. Results demon-
strate the effectiveness of HETEROSAMPLE in preserving the
node type distribution of the original heterogeneous graph
in the sampled graph. HETEROSAMPLE consistently outper-
forms existing sampling methods, including TLS-e, TLS-i,
and the deterministic sampling used in D-HetGNN, across
multiple datasets and sampling ratios. The BNE and meta-path
guided expansion strategies employed by HETEROSAMPLE

contribute to its superior performance in capturing the
heterogeneous structure of the original graph.

E. RQ4: Preservation of Meta-Path-Based Patterns

To evaluate the effectiveness of HETEROSAMPLE in cap-
turing and preserving the important semantic patterns and
relationships encoded by meta-paths, we measure the MPR on
the sampled graphs. We consider three representative meta-
paths for each dataset: APA, APCPA, APTPA for DBLP,
PAP, PSP for ACM, and MAM, MDM for IMDB. The MPR
values are calculated for HETEROSAMPLE and baseline meth-
ods (TLS-e, TLS-i, and deterministic sampling) at different
sampling ratios (10%–50%).

Figs. 9–11 present the MPR values of HETEROSAMPLE

and baseline methods on the DBLP, ACM, and IMDB datasets
at different sampling ratios. HETEROSAMPLE achieves the
highest MPR values across all datasets and sampling ratios,
demonstrating its superiority in preserving the important

Fig. 9. MPR under different sampling ratio in DBLP dataset.

Fig. 10. MPR under different sampling ratio in ACM dataset.

Fig. 11. MPR under different sampling ratio in IMDB dataset.

semantic patterns and relationships captured by meta-paths.
As the sampling ratio increases, the MPR values of
HETEROSAMPLE consistently improve, indicating its effec-
tiveness in capturing meta-path-based patterns even with
limited sampling budgets. In contrast, the baseline methods
show lower MPR values compared to HETEROSAMPLE

across all sampling ratios, suggesting their limited ability to
capture the semantic patterns encoded by meta-paths. The
higher MPR values of HETEROSAMPLE can be attributed to
its meta-path guided expansion strategy, which prioritizes the
inclusion of nodes and edges that form important meta-path
patterns. The experimental results highlight the effectiveness
of HETEROSAMPLE in preserving the rich semantics of
heterogeneous graphs, making it a valuable tool for tasks that
rely on meta-path-based analysis.

F. RQ5: Impact of Components on Sampled Graph Quality

To assess the impact of different components of
HETEROSAMPLE (top-leader selection, BNE, MGNE, and
meta-path-based sampling) on the quality of the sampled
graph, we evaluate the preservation of structural properties
and heterogeneous nature using 1-GRE as the sampled graph
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TABLE IV
RUNTIME UNDER DIFFERENT SAMPLING METHODS (SECOND)

quality. We consider four variants of HETEROSAMPLE:
HETEROSAMPLE (complete), HETEROSAMPLE without top-
leader selection (w/o TS), without BNE (w/o BNE), without
MGNE (w/o MGNE), and without meta-path-based sampling
(w/o MP). The evaluation is performed on the DBLP, ACM,
and IMDB datasets at a sampling ratio of 30%.

Table III presents sampled graph quality under different
methods. The complete HETEROSAMPLE achieves the high-
est scores across all datasets, indicating its effectiveness in
preserving the structural properties and heterogeneous nature
of the original graph. Removing any of the components leads
to a decrease in performance, highlighting their individual
importance in the sampling process. For example, the sam-
pled graph quality achieved the sampled graph quality of
95.26%, 97.13%, and 94.58% in DBLP, ACM, and IMDB
dataset, respectively. The combination of these components
in HETEROSAMPLE results in a high-quality sampled graph
that closely resembles the original graph in terms of structural
properties and heterogeneous nature.

G. RQ6: Computational Efficiency and Scalability

To evaluate the computational efficiency and scalability of
HETEROSAMPLE, we measure its runtime and compare it
with other state-of-the-art sampling methods on the DBLP,
ACM, and IMDB datasets, using a machine equipped with an
Intel Xeon E5-2680 v4 2.4GHz CPU and 256GB RAM, with
a sampling ratio set to 30% for all methods. Table IV presents
the runtime comparison, showing that HETEROSAMPLE

demonstrates competitive performance. Although deterministic
sampling achieves slightly better efficiency, HETEROSAMPLE

strikes a good balance between computational efficiency and
the quality of the sampled graph. Its runtime is reason-
able for the size of the heterogeneous graphs, indicating
strong scalability potential. Compared to TLS-e and TLS-i,
HETEROSAMPLE consistently achieves faster runtimes across
all datasets, with its efficient implementation leveraging
optimized data structures and algorithms. Overall, the exper-
imental results illustrate that HETEROSAMPLE effectively
balances computational efficiency and sampling quality, mak-
ing it suitable for heterogeneous graph mining tasks.

V. RELATED WORK

Graph sampling has garnered significant attention across
various research domains, particularly in deep learning appli-
cations for security tasks and biometric authentication. The
primary focus has been on developing sampling methods to
derive representative subgraphs from large graphs, which can

streamline downstream tasks, such as classification and clus-
tering [17], [37]. These techniques are crucial for enhancing
the performance and efficiency of models deployed in security-
sensitive environments, ensuring robust biometric systems and
other applications [10], [11], [12], [13], [24], [25], [26], [27],
[28], [29], [30], [31], [36]. Existing sampling approaches can
be broadly classified into three main categories: 1) node-based
sampling; 2) edge-based sampling; and 3) traversal-based
sampling [9], [17]. Node-based sampling methods, such as
induced random vertex (IRV) sampling [1], select nodes from
the original graph with equal probability and include the
existing edges among the selected nodes in the sampled
counterpart. Advanced node-based sampling methods, such
as random page-rank node (RPN) and random degree node
(RDN) [17], consider node importance metrics like page-
rank weights and node degrees for node selection. Edge-based
sampling methods, such as random edge (RE) sampling [9],
generate an induced subgraph by choosing edges uniformly
at random, but these methods can produce disconnected
samples and do not preserve the clustering structure well.
Traversal-based sampling methods, including depth-first (DF),
breadth-first (BF) [1], snowball (SB) [9], and forest fire (FF)
sampling [9], explore the graph using various strategies to
select nodes and edges. Among sampling with replacement
methods, RW sampling [17], random jump (RJ) sampling [9],
and metropolized RW (MRW) sampling [9], [17] have been
widely used.

While aforementioned sampling methods focus on
preserving node-level properties or graph connectivity, recent
research has emphasized the importance of preserving the
clustering structure of the original graph in the sampled
subgraph. Salehi et al. [18] proposed two sampling algorithms
based on the idea that a sample with good expansion property
tends to be more representative of the clustering structure.
Wang et al. [19] introduced a graph sampling method
based on graph Fourier transform (FGFT) that minimizes a
shifted A-optimal criterion to select sampled nodes greedily.
Jiao et al. [8] developed SInetL, a sampling method specific to
Internet topology that employs normalized Laplacian spectral
features to reduce the graph size while preserving essential
properties.

In heterogeneous graphs, Hu et al. [5] proposed HGT that
employs a meta-path-based attention mechanism to capture
the rich semantics and structural information of hetero-
geneous graphs. Yang et al. [35] introduced HGAT for
semi-supervised node classification, which utilizes node-level
and semantic-level attention to learn node representations.
Despite these advancements, existing sampling methods
for heterogeneous graphs often overlook the importance
of preserving the clustering structure and the complex
interactions among different node and edge types. This
limitation motivated our research on developing a novel
deterministic sampling approach, HETEROSAMPLE, which
aims to address these challenges by combining top-leader
selection, BNE, and meta-path guided expansion strategies
to generate representative samples that capture the struc-
tural and semantic properties of the original heterogeneous
graph.
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VI. DISCUSSION

Future Work: Despite the promising results, several potential
directions for future research can be identified. First, we
recognize the importance of discussing how the selected
meta-paths influence overall performance, as different meta-
path choices can significantly impact the sampling process
and the quality of the resulting subgraphs. To address this,
we plan to investigate the adaptation of HETEROSAMPLE

to dynamic heterogeneous graphs, where the graph struc-
ture and node/edge attributes evolve over time. Extending
HETEROSAMPLE to handle dynamic updates and maintain
representative samples in real-time would be a valuable
contribution. Second, we aim to explore the integration
of HETEROSAMPLE with other advanced graph neural
network architectures, such as heterogeneous graph transform-
ers and heterogeneous graph convolutional networks, to further
improve the performance of downstream tasks. Finally, we
intend to apply it to a wider range of real-world heterogeneous
graph datasets from various domains, such as healthcare, social
networks, and recommendation systems, to validate its gener-
alizability and practicality. Additionally, we plan to develop
a distributed implementation to handle extremely large-scale
heterogeneous graphs that cannot fit into the memory of a
single machine, enabling efficient sampling and analysis of
massive heterogeneous networks.

Limitations in Dynamic and Sparse Graphs:
HETEROSAMPLE is primarily designed for static heteroge-
neous graphs, so its performance may be impacted in highly
dynamic or evolving scenarios where node relationships
frequently change. Adapting the sampling method to
incrementally update the sampled subgraphs as these
changes occur will be essential for maintaining effectiveness.
Additionally, graph sparsity can pose challenges, as sparse
graphs may lead to inadequate representation of certain
node types, potentially reducing performance. Conversely,
dense node types can introduce noise, complicating the
preservation of meaningful relationships. Addressing these
limitations through targeted modifications will be crucial
for ensuring HETEROSAMPLE’s applicability across diverse
graph scenarios.

Efficiency and Scalability: HETEROSAMPLE is designed
to maintain computational efficiency even as graph size and
complexity increase. The time complexity for top-leader selec-
tion is O(n log n), where n is the number of nodes, due to
the need to sort nodes based on their importance scores.
Both BNE and MGNE contribute additional complexities,
typically linear in nature, leading to a combined complexity
that is manageable for large graphs. However, performance
may vary depending on graph density and the number of node
types. In extremely large-scale graphs, HETEROSAMPLE’s
efficiency can be further enhanced through parallel processing
and optimized data structures. In online or dynamic settings,
adapting HETEROSAMPLE to incrementally update sampled
graphs will be a key area for future research, ensuring it
remains effective in real-time applications.

Importance of Graph Sampling: Efficient heterogeneous
graph sampling is vital for various applications, including
recommendation systems, cybersecurity, and bioinformatics.

In recommendation systems, effective sampling enhances
user-item interaction representation, resulting in more per-
sonalized recommendations. In cybersecurity, it enables rapid
analysis of complex attack patterns, facilitating quicker threat
detection and response. In bioinformatics, sampling helps elu-
cidate intricate biological interactions, advancing personalized
medicine. By tackling challenges related to computational
efficiency and scalability, our method significantly contributes
to these fields, highlighting its practical importance.

VII. CONCLUSION

In this article, we introduce HETEROSAMPLE, a novel
sampling method for heterogeneous graphs that preserves
structural integrity, node and edge type distribution, and
semantic patterns. By integrating top-leader selection, BNE,
and meta-path-based sampling, it generates samples that reflect
the core features of heterogeneous graphs. Extensive testing
on real-world datasets shows that it outperforms existing
methods in maintaining heterogeneous structure and semantic
connections. When applied alongside various node embedding
and GNN techniques, it consistently enhances performance in
downstream tasks like link prediction. Overall, it achieves an
optimal balance between computational efficiency and sample
quality, making it ideal for large-scale heterogeneous graph
analysis.
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