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Abstract—Aiming to provide people with great convenience
and comfort, smart home systems have been deployed in thou-
sands of homes. In this paper, we focus on handling the security
and privacy issues in such a promising system by customizing
a new cryptographic primitive to provide the following security
guarantees: 1) fine-grained, privacy-preserving authorization for
smart home users and integrity protection of communication con-
tents; 2) flexible self-sovereign permission delegation; 3) forward
security of previous messages. To our knowledge, no previous
system has been designed to consider these three security and
privacy requirements simultaneously. To tackle these challenges,
we put forward the first-ever efficient cryptographic primitive
called the Forward-secure Hierarchical Delegable Signature (FS-
HDS) scheme for smart homes. Specifically, we first propose a
new primitive, efficient Hierarchical Delegable Signature (HDS)
scheme, which is capable of supporting partial delegation capabil-
ity while realizing privacy-preserving authorization and integrity
guarantee. Then, we present an FS-HDS for smart homes with
the efficient HDS as the underlying building block, which not
only inherits all the desirable features of HDS but also ensures
that the past content integrity is not affected even if the current
secret key is compromised. We provide comprehensively strict
security proofs to prove the security of our proposed solutions.
Its performance is also validated via experimental simulations to
showcase its practicability and effectiveness.

Index Terms—Smart home, self-sovereign delegation, forward-
secure, integrity.
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I. INTRODUCTION

IN THE rapidly evolving landscape of smart home technol-
ogy, while the benefits of real convenience and efficiency

are undeniable, significant concerns regarding security and pri-
vacy persist [1], [2], [3]. The integration of intelligent systems,
connecting everything from doorbells to thermostats via the
Internet of Things (IoT), also introduces potential vulnera-
bilities. These vulnerabilities open avenues for cyberattacks,
unauthorized data collection, and breaches in authentication,
potentially exposing users to risks such as identity theft,
surveillance, and unauthorized access [4], [5]. Furthermore,
as these devices become more interconnected, a single com-
promised device could threaten the entire network’s security.
With the prevalence of smart homes, addressing these privacy
and security challenges is imperative to ensure the protection
of personal and household privacy and security.

A. Security, Privacy & Efficiency Challenges

Despite various advanced cryptographic methodologies that
could be exploited to mitigate some security and privacy
issues in smart homes, current state-of-the-art initiatives still
exhibit certain deficiencies in security, privacy, and efficiency,
as elaborated below.

1) Inadequacy of Fine-Grained, Privacy-Preserving Coun-
termeasures to Tackle Permission Management and Integrity
Protection: Smart homes, which often involve managing a
variety of IoT devices, necessitate fine-grained access control
mechanisms due to the complexity and diversity of the devices
and user roles. That is to say, smart home applications need to
design access controls over who can perform certain actions
within a smart home environment based on attributes rather
than identity. For example, attributes could include roles such
as “parent”, “child”, and “guest”, or rights like “can adjust the
thermostat”, “can view camera”, or “can unlock door”. Since
smart IoT devices often operate based on remote instructions
from adjusting the thermostat settings to unlocking doors,
it is necessary to ensure that these commands are indeed
issued by authorized entities and have not been tampered with
during transmission. Furthermore, user privacy should also
be essentially ensured so that the actions performed do not
expose the identity of the user. If user identities linked directly
to actions are compromised, it could lead to targeted scams
or unwanted solicitation. As one of the effective potential
solutions, attribute-based signature (ABS) technologies [6],
[7], [8], [9], [10], [11], [15], [16], [17], [18] could provide a
secure approach for managing access in smart homes, catering
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to the needs of data integrity protection without compromising
user privacy. However, existing ABS methodologies are either
computationally intensive, owing to the extensive pairing
calculations required, or impractical due to the necessity of
involving a third party (e.g., cloud) to generate server-aided
signature. Consequently, how to efficiently and practically
realize both fine-grained permission management and integrity
protection is continuously challenging.

2) Absence of Self-Sovereign Delegation Mechanisms to
Flexibly, Efficiently Handle Partial Delegation Capabilities:
In smart homes, the ability to flexibly manage access and
control permissions is essential for efficient household oper-
ations and security. For example, if a parent is late coming
home from work, they might need a trusted family friend to
temporarily pick up their child from school and bring them
home. With the smart home system, a parent can dynamically
delegate temporary access to a friend. This approach avoids
permanently assigning the same access privileges to the friend.
It allows the friend to unlock the door during a specified
time, ensuring the child can be sent home safely. An intuitive
approach would be to use proxy-based techniques, which are
publicly regarded as solutions to realize dynamic delegation
authorization. However, this solution is less practical because
it requires the delegator to grant access to the entire set
of resources he/she owns, rather than allowing the partial
delegation of a subset to others. As an alternative methodology,
hierarchical delegable approaches [21], [22], [23], [24] have
been devised, which enable a delegator to partially delegate
his/her capability to other delegatees, such that the dele-
gatees can temporarily have partial access to the resources
the delegator authorizes. However, most existing hierarchical
delegable approaches (Refer to Section II. A for more details)
are inefficient due to prohibitive communication and computa-
tion overheads, since non-interactive zero-knowledge (NIZK)
proofs are exploited. Hence, how to efficiently realize partial
delegation authorization capabilities without utilizing NIZK
proofs remains an unsolved challenge.

3) Intractability of Hindering the Secret Key Exposure
Resulting in Security and Privacy Vulnerabilities: In smart
homes, safeguarding against the exposure of secret keys
instead of privilege revocation, which leads to various security
and privacy vulnerabilities, constitutes a formidable challenge.
For example, if an attacker were to obtain a residence’s secret
key, irrespective of whether due to deliberate or technical
key compromise, they could potentially manipulate sensitive
functionalities such as access controls and system logs. This
could include altering the login and entry records of smart
security systems, enabling unauthorized access to the home
without triggering alarms, or erasing any trace of the intrusion
in the system’s history. Such security breaches compromise not
only the physical safety of the residence but also the privacy
of its occupants by revealing household routines and activities.
Hence, it is essential to devise a key exposure resistance
mechanism to mitigate these vulnerabilities in smart homes.
One of the frequently utilized methodologies is the imple-
mentation of the tree-based forward-secure (TFS) technique
[12], [13], [14], [40] to realize updating secret keys associated
with time periods, which are only encoded in leaf nodes of

the tree. However, the costs of key updates in the majority
of TFS-based solutions are exorbitant since every key update
requires finding the intended time periods by traversing from
the root node to the leaf node. Another potential approach is to
exploit puncturable signature (PS) based solutions [42], [44],
[45], [46] to guarantee the timeliness of the secret key, thus
realizing forward security. However, most PS-based solutions
are inefficient due to the computationally expensive puncturing
process of frequent key updates (See Section II-B for more
details). Consequently, how to develop efficient forward-secure
solutions to handle key exposure in smart home applications
remains a significant challenge.

B. Solutions and Technical Challenges

1) Imperfections of Current Approaches: As far as we
are aware, no existing studies adequately address all the
outlined challenges simultaneously. As succinctly summa-
rized above, ABS technologies enable a user to create a
signature that proves possession of certain attributes without
compromising his/her specific attributes used; hierarchi-
cal delegable attribute-based signature/encryption approaches
(HABS/HABE) support a delegator with access to a set of
resources in delegating a subset of those resources to oth-
ers; both tree-based forward-secure ABS (TFS-ABS) and PS
methodologies enable the timeliness of the secret key, such
that past communications are immune from the exposure of
the secret key in the future. These cryptographic technologies
may be employed to mitigate the above challenges, whereas
they are only applicable to tackle certain ones in smart homes.

Concisely, with the feature of providing fine-grained per-
mission management, ABS methodologies enable integrity
protection for communications among IoT devices; however,
they fall short in addressing the needs of (2) & (3). Apart from
inheriting the properties that ABS enables, HABS approaches
are additionally capable of supporting self-sovereign dele-
gation, whereas existing HABS technologies are infeasible
for the requirement of (3). Besides, the computation and
communication costs of existing HABS are prohibitive, thus
inappropriate for resource-constrained IoT devices due to the
NIZK involved; both TFS-ABS and PS techniques enable
key exposure resistance while allowing for fine-grained per-
mission management and integrity protection, nevertheless,
neither of them caters to the requirements of (2). Furthermore,
existing TFS-ABS approaches are computationally intensive
due to the use of NIZK proofs for attribute privacy protec-
tion, while current PS solutions do not consider the privacy
issue.

2) Potential Solutions & Technical Challenges: Intuitively,
the security, privacy, and efficiency requirements stated above
might be met by integrating the aforementioned technolo-
gies. The most natural methods involve the application of
the TFS technique to HABS schemes or the incorporation
of PS technology into HABS schemes. However, elegantly
realizing the technical convergence of these technologies to
devise an efficient forward-secure hierarchical delegable sig-
nature (FS-HDS) methodology is not trivial but intractable
for the following reasons: (a) for the convergence of TFS
and HABS, although TFS techniques typically employ a
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hierarchical structure of keys as those in HABS, the distinct
hardness assumptions they depend on lead to some security
vulnerabilities in the integrated scheme; (b)for the integration
of PS and HABS, the secret keys in HABS are structured
(i.e., well-formed) while those in PS are structureless (i.e., ill-
formed). Once unstructured keys are embedded into structured
secret keys, the original structure of HABS’ secret keys is
likely to be damaged, which further leads to the failure of
self-sovereign delegation. Besides, despite technically perfect
combinations, merely achieving a technically seamless inte-
gration of these technologies is insufficient to devise such
an efficient FS-HDS scheme. The fundamental reason leading
to this inefficiency is the use of NIZK proofs for signature
generation and verification in current HABS schemes, and
how to implement an efficient HABS without using NIZK
technologies remains a technical challenge.

C. Our Contributions

In this paper, we design an efficient FS-HDS, the first-
ever efficient Forward-secure Hierarchical Delegable Signature
without using NIZK proof techniques for smart homes, which
elegantly addresses the most concerned challenges in smart
homes, such as efficient fine-grained permission management,
integrity and privacy protection, flexible self-sovereign delega-
tion, and key exposure resistance. The key technical novelties
are as follows: (I) We observe that a wicked identity-based
encryption (IBE) can be efficiently converted into an efficient
wicked identity-based signature (IBS) with a skillful trans-
formation approach instead of the known general one, which
innovatively overcomes the inefficiency issue of the general
transformation solution, i.e., a randomness is encoded with
the encryption algorithm of IBE and the verifier determines
the consistency with the random number by decoding it with
the secret key (given as signature parts); Then, the wicked IBS
is used to design our privacy-preserving hierarchical delegable
signature (HDS); (II) with the HDS, we also construct an
FS-HDS, which inherits all desirable features of the HDS
while additionally achieving forward security. The primary
contributions of this paper include the following:
• Efficient fine-grained authorization: To allow for the

granularity and effectiveness of access control in smart
homes, both our HDS and FS-HDS employ a fine-grained
authorization mechanism that precisely delineates user
permissions based on their attributes, which contributes
to the smart homes’ scalability.

• Integrity and privacy protection: To ensure that the
commands sent to smart IoT devices are not tampered
with during transmission, both our HDS and FS-HDS
methodologies empower a sender to generate a signature
with his/her secret key associated with a collection of
attributes, such that the integrity of transmitted commands
is preserved while simultaneously safeguarding the pri-
vacy of the sender’s attribute information.

• Flexible self-sovereign delegation: To enable a user with
access to a set of resources to individually grant another
user access to a specific subset of those resources, both
our HDS and FS-HDS exploit self-sovereign delegation

technique to support a delegator in delegating his/her
partial capabilities to others. Compared to other inflexible
delegations from the authority, flexibility and practicabil-
ity are greatly enhanced by self-sovereign delegation.

• Key exposure resistance: To mitigate the risks associated
with key exposure in smart homes, our FS-HDS employs
the TFS technique in our HDS to realize the forward
security of previous messages even if key exposure occurs
instead of the occurrence of privilege revocation.

Additionally, comprehensively rigorous security proofs have
been provided to demonstrate the FS-HDS with forward
security and unforgeability. Experimental evaluations have also
been conducted, showcasing the efficiency of our FS-HDS.

II. RELATED WORK

A. Hierarchical Attribute-Based Signature Schemes

Attribute-based signature (ABS) [6], [7] was a cryp-
tographic primitive designed to provide privacy-preserving
authentication of messages, which enables a signer to cre-
ate a signature that proves possession of certain attributes
without compromising the specific attributes used. Standard
ABS schemes primarily focus on two security properties:
user privacy and unforgeability. Specifically, user privacy can
be protected by preventing the disclosure of the signer’s
identity and the specific attributes used in the signing, while
maintaining unforgeability by ensuring that only a signer with
the requisite attributes can produce a valid signature for a given
policy. Subsequently, numerous ABS schemes with various
features have been devised, such as decentralized ABS [8],
[9], [10], [11], forward-secure ABS [12], [13], [14], registered
ABS [15], outsourced ABS [19], [20] and lattice-based ABS
[16], [17], [18], etc. However, most existing ABS schemes
are neither flexible nor scalable due to the need for a trusted
third-party (e.g., cloud server) to complete efficient signature
generation and the lack of support for hierarchical delegation
of attributes.

The hierarchical ABS (HABS) scheme, an advanced crypto-
graphic protocol, was recently proposed by Dragan et al. [21],
which overcomes some limitations of traditional ABS schemes
by allowing for controlled delegation of attributes from a root
authority through various intermediate entities to the users
[25]. In HABS [21], intermediate entities have the capability
to delegate attributes to any entity within the system, and
users are able to obtain attributes from any authorized entity
within the hierarchy. However, this methodology is inefficient
since HABS realizes the delegation capability by utilizing a
tag-based signature (TBS) and requiring it to incorporate all
previous public keys from the delegation chain. To eliminate
the dependency on successive releases of TBS from higher
to lower authorities on the authorization path, Gardham et
al. [22] proposed a new HABS with short key and optimal
signature primarily based on homomorphic trapdoor commit-
ments (HTC) and NIZK proofs. While the work [22] has
significantly optimized the HABS key lengths and delegation
efficiency [21], its efficiency, regardless of computation and
communication overheads, is still prohibitive due to the need
for multiple TBS and the associated NIZK proofs across
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TABLE I
PROPERTY-WISE COMPARISONS AMONG SIMILAR RELATED WORKS

the hierarchical structure. Subsequently, Gardham et al. [23]
also formulated a revocable lattice-based HABS with the
methodologies as those in [22]. Very recently, Kumar et al.
[24] have realized a general concrete HABS for supporting
the key delegation in end-to-end IoT applications based on
the hierarchical identity-based encryption scheme (HIBE) [28].
However, the HABS [24] construction is also inefficient since
the general signature transformation solution in the same vein
as has been done in [26] and [27] is exploited to extend a
HIBE to a HABS scheme. Subsequently, they also presented
an improved HABS in the full version of [24], however, the
scheme cannot realize the forward security. Please note that
the schemes (viewed as weak HABS schemes) in [24] actually
do not consider attribute privacy of a sgner since the attribute
pattern/policy in the signature can directly reveal the attribute
privacy a signer owns.

To summarize, while there have been attempts to develop
HABS schemes, designing a highly efficient HABS solution
without NIZK proofs used remains one of the focuses for
continuous exploration.

B. Forward-Secure Signature Schemes

The concept of forward security (FS) was initially intro-
duced by Anderson [29], which was originally explored in the
context of key exchange protocols, to the domain of digital
signatures in order to lessen the consequences of signing
key compromises. Subsequently, Bellare et al. [30] formally
formulated the concept of a forward-secure digital signature
and introduced its first practical implementation based on the
hardness of factoring large numbers. Subsequently, numerous
FS signature schemes [31], [32], [33] mainly based on tree-
based HIBE solutions were suggested in terms of security and
efficiency. The idea of these FS solutions has been broadened
to include FS threshold signature (FS-TS) [34], [35], FS
identity/attribute-based signature (FS-IBS) [12], [13], [14],
[36], [37], [40], FS multi-signature (FS-MS) [38], [39] and
FS lattice-based signature (FS-LBS) [41], etc. Although the
above FS signature schemes enable forward security, most of
them fail to support fine granularity.

Recent advancements in some puncturable signature
schemes [42], [43], [44], [45], [46] ensuring fine-grained
forward-security have been made. Specifically, Green et al.
[42] formalized the concept of puncturable encryption (PE)
that provides fine-grained forward-security property. In [42],
this technique involves dynamically altering encryption keys
after each message, effectively rendering past keys inaccessible
and preventing retrospective decryption of messages even if a
key is compromised. After that, Bellare et al. [43] presented
the idea of puncturable signature (PS) based on the PE
solution, providing a design reliant on indistinguishability
obfuscation (iO) and one-way functions. Halevi et al. [44]
defined a PS scheme that necessitates frequent updates to the
signers’ public keys. Li et al. [45] proposed a puncturable
signature scheme that incorporates the principles of bloom
filter encryption. Wei et al. [46] put forth two puncturable
multi-signature schemes to achieve compact and efficient
forward-security. The PS-based technique enables robust pro-
tection against key compromises by allowing dynamic key
updates after each use. Nevertheless, this approach also incurs
significant key management overhead and computational costs
due to a computationally expensive puncturing process of
frequent key updates.

In summary, the above FS signature schemes maintain
the integrity of previously signed messages by periodically
updating and invalidating the current signing key, ensuring that
security persists even if a key compromise occurs. However,
most existing FS signature schemes are neither efficient nor
capable of supporting privacy-preserving authentication of
messages and flexible fine-grained key delegation. TABLE. I
provides a comparative conclusion of characteristics across
various existing works.

III. BASIC KNOWLEDGE AND DEFINITIONS

A. Hardness Assumptions

Definition 1: Given a tuple (g, gα, gβ) ∈ G3
0, the goal

of any adversary A is to compute gαβ ∈ G0. We say the
Computational Diffie-Hellman (CDH) problem holds [28] if
the advantage in solving CDH assumption is negligible.
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Definition 2: Given a tuple (g, gα, gα
2
, . . . , gα

L
) ∈ GL−1

0 , the
goal of any adversary A is to compute gα

L+1
∈ G0. We say

the Computational Diffie-Hellman Exponent (CDHE) problem
holds [39] if the advantage in solving the CDHE assumption
is negligible.

B. Attribute Pattern

An attribute pattern P is defined as an attribute vector
(P1, . . . ,P`) ∈ {0, 1}∗ ∪ {∗} of length `, where ∗ denotes a
special wildcard symbol [28]. Each element Pi in the attribute
pattern P can be either a specific identity string or the
wildcard. A user possessing the secret key for a particular
pattern P can generate secret keys for any pattern P ′ that
matches P . We define a pattern P ′ = (P ′1, . . . ,P ′`) as matching
P , denoted P ′ ∈∗ P , if and only if P ′i = Pi or Pi = ∗.
An access pattern P∗ is also defined as an access vector
(P∗1 , . . . ,P∗` ) ∈ {0, 1}∗ ∪ {∗}. If P ∈∗ P∗ holds, we say that
the attribute pattern P matches the access pattern P∗.

C. Encoding Time Periods

In previous tree-based forward-secure signatures, the time
periods T were only associated with leaf nodes using the
pre-order traversal algorithm [48], [49]. This resulted in an
amortized complexity of key updates of O(log T ) exponenti-
ations. In our method, all nodes related to time periods T are
encoded with the pre-order traversal algorithm to achieve a
complexity of key updates of O(1) exponentiations [39].

In a binary tree with depth L − 1, there are 2L − 1 nodes
corresponding to time periods T in [2L−1]. The nodes of the
tree with depth L − 1 and strings in {1, 2}≤L−1 are encoded,
where 1 and 2 denote taking the left and right branches,
respectively. Note that we use the strings {1, 2} instead of {0, 1}
to encode the time periods, as strings of length exactly L − 1
are required, thus requiring to pad strings in {1, 2}≤L−1 with
zeroes [24].

The association between t = t1||t2|| . . . ∈ {1, 2}≤L−1 and t ∈
[2L−1], for any integer L, is explicitly described as a bijection
t(t) = 1 +

P|t|
j=1(2 − ti + 2L−i(ti − 1)).

For example, for L = 3, this maps ε, 1, 11, 12, 2, 21, 22 to
1, 2, 3, 4, 5, 6, 7. The inverse of this bijection can be described
as:

t(1) = ε,

t(t) = t(t − 1)||1 if |t(t − 1)| , L − 1,

t(t) = t||2 if |t(t − 1)| = L − 1,

where t is the longest string such that t||1 is a prefix of t(t−1).
The bijection implies a natural precedence relation over

{1, 2}≤L−1, where t � t′ if and only if either t is a prefix
of t′ or there exists t such that t||1 is a prefix of t and t||2 is a
prefix of t′. In this paper, we also write t and t+ 1 as t, t+ 1.

We define a set Φt associated with any t ∈ {1, 2}≤L−1 as
Φt = t ∪ {t||2 : t||1 is a prefix of t}, which contains t along
with all the “right-hand siblings” of nodes on the path from t
to the root. This set is the smallest set of nodes that includes
a prefix of all t′ � t. For example, for L = 3, the following
information can be concluded: Φ1 = {1, 2}, Φ11 = {11, 12, 2},
Φ12 = {12, 2}.

The following properties for the sets Φt must hold:

• t′ � t if and only if there exists x ∈ Φt such that x is a
prefix of t′.

• For all t, Φt+1 = Φt \ {t} if |t| = L − 1, or Φt+1 = (Φt \

{t}) ∪ {t||1, t||2} if |t| < L − 1.
• For all t′ � t, for all x′ ∈ Φt′ , there must exist x ∈ Φt

such that x is a prefix of x′.

In the above properties, the first one is used for signature
verification, and the last two are used for fast key updates.

D. The Framework of FS-HDS Scheme

Our FS-HDS contains five algorithms: Setup, KeyDerive,
KeyUpdate, Sign and Verify. The Setup algorithm is run by a
trusted authority (TA) to generate the public parameter and the
master secret key; the KeyDerive algorithm is used to produce
the secret key for signers; the KeyUpdate algorithm is used
to update the secret key for the time period to an updated
secret key for the subsequent time period; the Sign algorithm
is utilized by the signer to create a signature on a message
in a specified time period; the Verify algorithm is executed
by any verifier to check the validity of the signature of a
given message. The detailed algorithms of Setup, KeyDerive,
KeyUpdate, Sign and Verify are described as follows:

• (pp,msk) ← Setup (λ, `, T ): On the input of a security
parameter λ, the maximum number ` of levels, the
maximum number time slots T , TA generates the public
parameter pp and master secret key msk.

• skP ,t ← KeyDerive (msk, pp, P , t): On the input of
the master secret key msk, the public parameter pp,
an authorization pattern P and a time period t, the TA
generates a secret key skP ,t with regard to P for a user.
Particularly, the initial secret key for the first time period
is set as skP ,1. It is also worth noting that anyone owning
the secret key can create a new delegated key sk′P ′,t for
pattern P ′, i.e., sk′P ′,t ← KeyDerive (skP ,t, pp, P ′, t).

• skP ,t+1 ← KeyUpdate (skP ,t): On the input of the secret
key skP ,t for the time period t, it can produce the new
updated secret key skP ,t+1 for the next period t + 1. It
is worth noting that it can also flexibly offer key updates
by performing skP ,t′ ← KeyUpdate (skP ,t) as long as
t′ ≥ t.

• σ ← Sign (skP ,t, m, P∗, t): On the input of secret key
sk with the access pattern P , a message m ∈ {0, 1}∗, a
time period t and a pattern policy P∗, the signer returns
a signature σ with its policy P∗.

• (“1′′or“⊥′′)← Verify ((σ,P∗), m, pp, t): On the input of
a message m, a signature σ with its access pattern (i.e.,
policy) P∗, the time period t and the public parameter pp,
the verifier determines the validity of the given signature.
If it is valid, the verifier returns “1”; otherwise, the verifier
returns an abortion symbol “⊥”.

Correctness: The standard consistency constraint of digital
signature must be satisfied, i.e., if σ ← Sign (skP , m, P∗, t)
holds, then “1′′ ← Verify ((σ,P∗), m, pp, t) always holds.
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Fig. 1. System Model for Smart Homes.

E. Security Definition of FS-HDS

Unforgeability under chosen-pattern-and-message attacks
for hierarchical forward-secure signature is formalized
between an adversary A and a challenger C via the following
game:
• Init: A first gives the challenge pattern P∗ = (P∗1 , . . . ,P∗` )

and the challenge time period t∗ to C.
• Setup: C executes Setup to generate the public parameter

pp and the master secret key msk. Subsequently, C
securely stores msk while pp is sent to A.

• Key Update: If the current time period t (initially t = 1)
is less than T, then this oracle updates the key skP ,t for
the time period t to skP ,t+1.

• Signing Phase: Upon receiving a message m, the oracle
utilizes the Signing oracle with the current skP ,t and m,
resulting in the signature σ.

• Break-in: This experiment records the break-in time t ←
t and provides the current signing key skP ,t to A. This
oracle can only be queried once, and subsequent queries
to the key update or signing oracles by A are disallowed.

• Forgery: A outputs (σ∗,m∗,P∗, t∗), where the pattern
itself P∗ does not emerge in any KeyDerive queries dur-
ing time period t∗. Furthermore, any Sign on (m∗,P ′, t∗)
during time period t∗, where P ′ is the P∗, has also not
been queried in this phase.

The game is won by A if the response of the Verify on
(σ∗,m∗,P∗, t∗) always outputs “1”. Besides, the break in oracle
was queried, then it did so in a time period t ≥ t∗. The A’s
advantage is defined as AdvS ig

FS (A).

IV. MODELS, GOALS AND TECHNICAL OVERVIEW

A. System Architecture for Smart Homes

Our FS-HDS based smart home architecture mainly consists
of three types of entities: Authority, Signers and Verifiers, as
shown in Fig. 1. The authority in smart homes is commonly
the home manager (i.e., householder), which is a fully honest
entity responsible for initializing the public parameters of
smart homes and distributing the private key to other family
members by implementing the Setup & KeyDerive algorithms;
The signers can be home members or delegatees of home
members, who can make requests via their apps to smart IoT
devices (e.g., smart door lock). Through these devices, they
can perform some commands (e.g., opening door, cooking on
time, etc.) within the specified time. Specifically, the signer
selects an attribute pattern (i.e., policy) instead of his/her

identity and utilizes his/her secret key to generate a signature
regarding the requests by performing the Sign algorithm; It is
worth learning that a family member acting as a delegator can
also carry out the KeyDerive algorithm for a delegatee to real-
ize self-independent delegation of his/her partial capabilities.
The delegatee can also make some service requests to some
IoT devices as the delegator makes; The verifiers are smart IoT
devices, which can confirm whether the signature for the com-
mand is valid via signature verification. Once the validity of
the command is authenticated by calling the Verify algorithm,
they are required to follow the instructions and execute the
operation commands. It is important to note that signers and
verifiers are also general users who could maliciously launch
various attacks, including forgery and collusion attacks, etc.,
to compromise the integrity of ciphertexts generated by others.

B. Threat Model and Security Goals

In our smart homes with our FS-HDS, four various attacks
are considered in our threat model. Specifically, (I) any
attackers try to launch collusion attacks to derive a legitimate
secret key, thus further launching forgery attacks to forge a
valid signature; (II) malicious adversaries who intentionally
launch forgery attacks aim to compromise data authenticity
by intercepting-then-altering or substituting raw data even if
they do not have the legitimate secret keys; (III) any adversary
who captures the current compromised secret key intends to
undermine the validity and originality of previously issued
signatures; (IV) any adversary, regardless of whether they are
authorized or unauthorized smart IoT devices, attempts to learn
some privacy information (e.g., identity, attribute) from a valid
signature. Taking into account these attacks in smart homes,
we have formally stated our security objectives as follows:

• Collusion attack resistance: Any adversary in smart
homes lacking authorized secret keys is incapable of
reconstructing a legitimate secret key by combining par-
tial keys, irrespective of whether these partial keys are
obtained from authorized or unauthorized ones.

• Authenticity of requested contents: Once a signature for
the requested content has been generated, it cannot be
tampered with or forged by any malicious user unless
they possess the same legitimate secret keys.

• Forward security of previous contents: Even if current
secret keys are compromised to an adversary, the contents
previously communicated remain forgery resistant and
unaffected.

• Identity/Attribute anonymity. The access pattern attached
in a signature indicating partial attributes the signer
possesses is embedded in the signature, any user/smart
device can neither deduce the signer’s complete set of
attributes nor ascertain the signer’s identity from the
signature alone. In other words, it offers privacy by
allowing the signer to remain anonymous while ensuring
that the verifier can confirm that the signer possesses the
required attributes.

Besides, the high efficiency is also one of our design goals,
ensuring rapid processing and minimal computational load.
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This efficiency facilitates quick signature and verification in
smart homes.

V. EFFICIENT HDS CONSTRUCTION

A. Basic Ideas and Technical Overview

Unlike the previously inefficient methodologies (e.g., [21],
[22], [23], [24]) that require the use of Non-Interactive
Zero-Knowledge (NIZK) proofs to prove knowledge of each
tag-based signature at every delegation of each attribute
required to meet the policy, we have devised an efficient
privacy-preserving hierarchical delegable signature (HDS)
mechanism without using NIZK proofs. The reason previous
approaches failed to devise an efficient privacy-preserving
HDS without NIZK proofs is the difficulty in produc-
ing well-formed (i.e., structured) secret keys. Our HDS is
achieved by seamlessly integrating hierarchical delegable ID-
based cryptography [26] and the standard signature technique.
Specifically, to circumvent the challenge of producing a well-
formed secret key, where a secret key in our HDS involves
two parts: one is an integrated secret key, and the others are
multiple well-formatted secret keys, we exploit the component
padding technique [26] to incorporate new factors into the
integrated key component and insert the formatted secret keys
produced using random values associated with these factors
into distributed well-formatted key components. It is worth
noting that the term “structure” refers to the property that a
secret key is well-formed, meaning that if a secret key is used
to generate a new key (e.g., in the context of key delegation
or transformation), the structure of the newly generated key
remains consistent with the original key. For instance, the num-
ber of sub-keys or the key format remains unchanged, ensuring
structural consistency between the original and derived keys.
In contrast, “structureless (unstructured)” refers to the property
that a secret key is ill-formed, implying that if a secret key
is used to generate a new key, the structure of the newly
generated key changes. For example, the number of sub-keys
in the derived key may differ from that of the original key, or
the format of the key might not adhere to the original structure.

B. Concrete Construction of HDS

• Setup (λ, `): On the input of a security parameter λ,
the maximum number ` of attributes, the root identity
performs the following executions:

1) Select random generators g, h0, . . . , h` ∈ G0 and τ ∈
Zp and compute g1 = gτ.

2) Select a hash function H that is defined as H :
{0, 1}∗ × G0 → Zp.

3) Publish the public parameter pp =

(g, g1, h0, . . . , h`,H) and keep the master secret key
msk = hτ0 secret.

• KeyDerive (msk, pp, P): On the input of the master
secret key msk, the public parameters pp, a pattern
P = (P1, . . . ,P`), the root proceeds with the following
executions:

1) Let I = W(P). For all i ∈ I, pick ri ∈ Zp and let
bi ← gri , a← hτ0 ·

Q
i∈W(P)Hi(Pi)ri , where Hi(x) is

set as Hi(xi) = gx
1 ·hi = (gτ)xi ·hi andW(P) refers to

the complementary set containing all non-wildcard
indices in P .

2) The secret key for pattern P is skP = (a, {bi}i∈I).
Anyone owning this secret key can create a new key skP ′
for the pattern P ′ = (P ′1, . . . ,P ′`) ∈∗ P as follows:

1) P ′ ∈∗ P indicates that I ∈ I ′. For all i ∈ I, select
ri ∈ Zp and calculate b′i ← bi ·gri ; for i ∈ I ′\I, select
ri ∈ Zp and compute b′i ← gri . Besides, calculate
a′ ← a ·

Q
i∈W(P ′)Hi(P ′i )ri .

2) The secret key for the pattern P ′ is skP ′ =

(a′, {b′i}i∈I′ ).
• Sign (skP , m, P∗): On the input of a message m ∈ {0, 1}∗,

the secret key skP , a pattern policy P∗ = (P∗1 , . . . ,P∗` )
such that P∗ ∈∗ P , the signer implements the following
steps:

1) Let I∗ = W(P∗), where W(P∗) refers to the com-
plementary set containing all non-wildcard indices
in P∗. For all i ∈ I∗, select ri ∈ Zp and calculate
b∗i ← bi · gri ; for i ∈ I∗ \ I, select ri ∈ Zp

and compute b∗i ← gri . Besides, calculate a∗ ←
a ·
Q

i∈W(P∗)Hi(P∗i )ri . Here notice that (a∗, {b∗i }i∈I∗ )
is well-formed.

2) Pick s ∈ Zp and compute x = hs
0.

3) Calculate t = H(m, x).
4) Repeat Steps 2) & 3) such that the event s + t = 0

is forbidden to occur.
5) For i ∈ I∗, compute yi = (b∗i )s+t.
6) Compute z = (a∗)s+t.
7) Output the signature σ = (x, {yi}i∈I∗ , z) with the

picked pattern policy P∗ and signed message m.
• Verify (m, (σ,P∗), pp): On the input of a message m,

a valid signature σ with its policy P∗ and the public
parameter pp, the verifier implements the following steps
to determine the validity of the given signature:

1) Perform the calculation t = H(m, x).
2) Output “1” if e(z, g) = e

�
g1, ht

0 · x ·
Q

i∈W(P∗) yP
∗
i

i

�
·Q

i∈W(P∗) e(yi, hi) holds; otherwise return an abortion
symbol “⊥”.

Remark 1: The signer uses his/her screct key skP and com-
bines the selected pattern policy P∗ to produce the signature
σ, where P∗ ∈∗ P . As defined in I =W(P) and I∗ =W(P∗),
it is easily learned I ∈ I∗. In other words, the adversary can
only obtain the attributes of pattern policy but fails to truly
learn the attributes the signer owns, thus realizing the attribute
privacy of the signer.

VI. EFFICIENT FS-HDS CONSTRUCTION

A. Basic Ideas and Technical Overview

At first glance, forward security can be easily realized in
existing HDS schemes via TFS or PS technologies. However,
potential issues that could emerge from integrating TFS or PS
into existing HDS solutions will be outlined: (I) incapability
of resolving inefficiencies, the reason originates from the
inefficiencies of existing HDS methodologies; (II) the security
uncertainties of devised FS-HDS or the occur of various
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Fig. 2. Roadmap for KeyUpdate.

security vulnerabilities (e.g., collusion attacks), the reason
leading to this is the significant difference of the hardness
assumptions the distinct cryptographic solutions depend on;
(III) the failure of delegation realization due to the structure
destruction of secret key. Hence, the challenge of devising an
efficient FS-HDS lies in achieving the same level of security as
the TFS approach while ensuring that the secret key’s structure
is not undermined. In this paper, we also design an efficient
privacy-preserving forward-secure HDS (FS-HDS) based on
our HDS, which overcomes the technical challenges (I)-(III).
In more detail, we avail of the (structured) TFS to realize the
structure-preserving secret key of our FS-HDS, thus ensuring
the well-formed property of a secret key. Besides, since the
hardness assumption TFS scheme depends on is essentially
the extension of the one our efficient HDS relies on, the
security and efficiency of our FS-HDS can be guaranteed.
Our FS-HDS not only supports resilient key delegation of
secret key from skP,i to skP′′′,i if P ⊂ P′′′, but also enables
more flexible and fast-forward key update of the secret key
skP,i for the time period to skP,t for any time t ≥ i. Via
the above two flexible processing ways (i.e., KeyDerive-then-
KeyUpdate or KeyUpdate-then-KeyDerive), the secret key
skP′′,i can be easily updated to the secret key skP′′′,i. The
technical roadmap realizing the above process has been shown
in Fig. 2. To summarize, the KeyDerive-then-KeyUpdate solu-
tion is advantageous in structured, privilege-based hierarchies
where initial delegation is critical before updating by time,
while the KeyUpdate-then-KeyDerive one is more flexible
and efficient in environments with frequent, time-sensitive key
updates followed by self-sovereign delegation.

B. Concrete FS-HDS Construction

• Setup (λ, `, T ): On the input of a security parameter λ,
the maximum number ` of levels, the maximum number
time slots T = 2L − 1, the root identity performs the
following executions:

1) Select random generators g, h0, . . . , h`, u0, . . . , uL ∈
G0 and τ ∈ Zp and compute g1 = gτ.

2) Select a hash function H that is defined as H :
{0, 1}∗ × G0 → Zp.

3) Publish the public parameter pp =

(g, g1, h0, . . . , h`, u0, . . . , uL,H) and keep the
master secret key msk = hτ0 secret.

• KeyDerive (msk, pp, P , t): On the input of the master
secret key msk, the public parameters pp, a pattern
P = (P1, . . . ,P`), the time period t, the root proceeds

with the following executions to compute initial secret
key skP ,1 ← bskP ,ε for the first time period t = ε:

1) Let I =W(P). For all i ∈ I, pick ri, r ∈ Zp and let
bi ← gri , a← hτ0 ·

Q
i∈W(P)Hi(Pi)ri ·ur

0, where Hi(x)
is set as Hi(xi) = gx

1 · hi = (gτ)xi · hi. Besides, it also
computes d = gr, ek = ur

k for k ∈ [1,L].
2) The initial secret key for pattern P is bskP ,ε =

(a, {bi}i∈I , d, {ei}i∈[1,L]).
Anyone owning the secret key skP ,t can create a new key
skP ′,t for the pattern P ′ = (P ′1, . . . ,P ′`) ∈∗ P as follows:

1) P ′ ∈∗ P indicates that I ∈ I ′. For all i ∈ I, select
ri ∈ Zp and calculate b′i ← bi ·gri ; for i ∈ I ′\I, select
ri ∈ Zp and compute b′i ← gri . Besides, calculate
a′ ← a ·

Q
i∈W(P ′)Hi(P ′i )ri , d′ = d and e′i = ei.

The final format of a delegated key is a′ ← hτ0 ·Q
i∈W(P ′)Hi(P ′i )ri ·

�
u0
Qk

j=1 ut j
j

�r
, b′i = gri , d′ = gr

and e′i = ur
i .

2) The delegable key for the pattern P ′ is skP ′,t ←bskP ′,t = (a′, {b′i}i∈I′ , d
′, {e′i}i∈[k+1,L]), where t ∈

{1, 2}k.
It is worth noting that the initial delegable key for the
pattern P ′ is skP ′,1 ← bskP ′,ε = (a′, {b′i}i∈I′ , d

′, {e′i}i∈[1,L]).
• KeyUpdate (skP ,t): On the input of the secret key skP ,t

with its current time period t, it computes the follows
steps to update its secret key skP ,t for the time period t
to skP ,t+1 for the next time period:

1) Each w ∈ {1, 2}k is associated with a secret keybskP ,w of the form asbskP ,w = (a, {bi}i∈I , d, {ei}i∈[k+1,L])

= (hτ0 ·
Y

i∈W(P)

Hi(Pi)ri ·

0@u0

kY
j=1

uw j
j

1Ar

,

gr1 , . . . , gri , gr, ur
k+1, . . . , u

r
L), (1)

for r ∈ Zp. Given skP ,w, one can compute a new
key for skP ,w′ any w′ ∈ {1, 2}k′ that contains w as a
prefix as follows:bskP ,w′ =

�
â′,
˚
b̂′i
	

i∈I , d̂
′,
˚
ê′i
	

i∈
�

k′+1,L
� �

=
�
a ·

k′Y
j=k+1

ew j
j ·

0@u0

k′Y
j=i

uwi
i

1Ar′

, gr1 , . . . ,

gri , d · dr′ , ek′+1 · ur′
k′+1, . . . , eL · u

r′
L
�
, (2)

for r′ ∈ Zp. Hence, the secret key skP ,t at time
period t is given by skP ,t = {bskP ,w : w ∈ Ψt}.
Based on the first property, this secret key contains
a secret key skP ,w for a prefix w of all nodes t′ � t.

2) To proceed with the update of skP ,t to skP ,t+1, the
signer uses the second property to update its secret
key, that is, if |t| ≤ L − 1, then the signer looks upbskP ,t = (â′, {b̂′i}i∈I , d̂′, {ê′i}i∈[|t|+1,L]) ∈ skP ,t and cal-
culates bskP ,t||1 = (â′ ·ê′

|t|+1, {b̂
′
i}i∈I , d̂′, {ê′i}i∈[|t|+2,L]) ∈

skP ,t. Besides, the signer computes bskP ,t||2 from
skP ,t with the Equation (2). Finally, the signer sets
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skP ,t+1 = (skP ,t \ bskP ,t) ∪ (bskP ,t||1, bskP ,t||2) and
deletes skP ,t. If |t| = L − 1, the signer directly sets
skP ,t+1 = (skP ,t \ bskP ,t) and deletes skP ,t.

Remark 2: To enable more flexible and fast-forward key
update of the secret key skP ,t for the time period to skP ,t′
for any time t′ ≥ t, the new secret key bskP ,w′ for all nodes
w′ ∈ Φt′ \ Φt of the signer can be also derived by using the
Equation (2) to derive the key bskP ,w ∈ bskP ,t, such that w′
contains w, which must hold due to the third property of Φt.
Then the signer can set skP ,t′ ← {bskP ,w′ : w′ ∈ Φt′ } and delete
skP ,t.
• Sign (skP ,t, m, P∗, t): On the input of a message

m ∈ {0, 1}∗, the secret key skP ,t, a pattern policy
P∗ = (P∗1 , . . . ,P∗` ) such that P ∈∗ P∗ and a time
period t ∈ {1, 2}≤L−1, the signer implements the following
steps:

1) Let I∗ = W(P∗). For all i ∈ I∗, select ri ∈ Zp

and calculate b∗i ← bi · gri ; for i ∈ I∗ \ I, select
ri ∈ Zp and compute b∗i ← gri . Besides, calculate
a∗ ← a ·

Q
i∈W(P∗)Hi(P∗i )ri . Besides, set d∗ = d,

e∗j = e j for j ∈ [|t| + 1,L]. Here notice that
(a∗, {b∗i }i∈I∗ , d

∗, {e∗j} j∈[|t|+1,L]) is well-formed.
2) Pick s ∈ Zp and compute x = hs

0.
3) Calculate ϕ = H(m, x).
4) Repeat Steps 2) & 3) such that the event s + ϕ = 0

is forbidden to occur.
5) For i ∈ I∗, compute yi = (b∗i )s+ϕ.
6) Select r′ ∈ Zp and compute f = (d∗ · gr′ )s+ϕ and

z =

0@a∗ ·

 
u0

|t|Q
j=1

ut j
j

!r′
1As+ϕ

.

7) Output the signature σ = (x, {yi}i∈I∗ , f , z) with the
picked pattern policy P∗.

• Verify (m, (σ,P∗), pp, t): On the input of a message m, a
valid signature σ with its policy P∗, the public parameter
pp and the time period t, the verifier implements the
following steps to determine the validity of the given
signature:

1) Perform the calculation ϕ = H(m, x).
2) Output “1” if e(z, g) = e

�
g1, h

ϕ
0 · x ·

Q
i∈W(P∗) yP

∗
i

i

�
·Q

i∈W(P∗) e(yi, hi) · e

 
u0

|t|Q
j=1

ut j
j , f

!
holds; otherwise

return an abortion symbol “⊥”.

Remark 3: Although our FS-HDS achieves the key expo-
sure resistance via the realization of forward security, our
FS-HDS does not consider the privilege revocation. Real-
ize the privilege revocation in our FS-HDS is actually not
difficult by introducing the KUNode algorithm [50] to our
FS-HDS.

VII. CORRECTNESS AND SECURITY PROOF
OF FS-HDS SCHEME

Theorem 1: The signature can be publicly verified by anyone
if the signature is validly produced with a valid secret key.

Proof: Anyone can perform the following calculations to
check the signature validity of our FS-HDS scheme:

e

0@g1, h
ϕ
0 · x ·

Y
i∈W(P∗)

yP
∗
i

i

1A Y
i∈W(P∗)

e(yi, hi)e

0@u0

|t|Y
j=1

ut j
j , f

1A
= e

0@gτ, (h0)s+ϕ
Y

i∈W(P∗)

(b∗i )(s+ϕ)P∗i

1A Y
i∈W(P∗)

e(gr∗i , hs+ϕ
i )

· e

0@u0

|t|Y
j=1

ut j
j , g

(r+r′)(s+ϕ)

1A
=
�
e

0@gτ, h0

Y
i∈W(P∗)

(b∗i )P
∗
i

1A Y
i∈W(P∗)

e(gr∗i , hi)

· e

0@u0

|t|Y
j=1

ut j
j , g

r+r′

1A�s+ϕ

=
�
e

0B@g, hτ0 · g
τ
P

i∈W(P∗ ) r∗i P∗i

0@u0

|t|Y
j=1

ut j
j

1Ar+r′
1CA · Y

i∈W(P∗)

× e(gr∗i , hi)
�s+ϕ

=
�
e

0B@g, hτ0 · g
P

i∈W(P∗ ) r∗i P∗i
1 ·

0@u0

|t|Y
j=1

ut j
j

1Ar+r′
1CA LY

i∈W(P∗)

× e(g, hr∗i
i )
�s+ϕ

=

264e

0@g, hτ0 ·
Y

i∈W(P∗)

(gP∗i
1 hi)r∗i

1A ·0@u0

|t|Y
j=1

ut j
j

1Ar+r′
375

s+ϕ

=

264e

0@g, hτ0 ·
Y

i∈W(P∗)

Hi(P∗i )r∗i

1A ·0@u0

|t|Y
j=1

ut j
j

1Ar+r′
375

s+ϕ

= e

0B@g,

0B@a∗ ·

0@u0

|t|Y
j=1

ut j
j

1Ar′
1CA

s+ϕ1CA = e(g, z).

If the above equation holds, the signature σ is valid. �
Theorem 2: If the CDHE assumption holds, our FS-HDS is

forward secure against existential forgery under selective pat-
tern attacks and adaptive chosen-pattern-and-message attacks.

Proof: It is assuming that there is an adversary A that has
an advantage ε in successfully attacking our scheme, then we
can present that an algorithm C can be constructed to solve
the CDHE problem. In other words, given (A0 = g, A1 =

gα, gα
2
, . . . , AL = gα

L
), C is capable of computing gα

L+1
. In

this proof, we let g1 = gα and h0 = AL = gα
L

. The selective
pattern game is simulated via the interaction between C and
A in the following:

• Init: When the game starts, A first gives the chal-
lenge pattern P∗ = (P∗1 , . . . ,P∗` ) and the challenge time
period t∗ to C. Let w∗ ∈ {0, 1, 2}L−1 such that w∗ =

w∗1|| . . . ||w
∗
L−1 = t∗||0L−1−|t∗ |.
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• Setup: To produce the system public parameters, C first
randomly selects α1, . . . , α` ∈ Zp, defines hi = g−P

∗
i

1 gαi

for all i ∈ [1, `]. Also, it chooses γ0, . . . , γL and sets

u0 = gγ0
L−1Q
j=1

A
−w∗j
L− j+1 and u j = gγ j AL− j+1 for j ∈ [1,L].

Besides, the functions Hi(.) is defined as the functions
Hi(x) = gx

1hi = (gτ)x−P∗i gαi . Finally, the system public
parameter pp = (g, g1, h0, h1, . . . , h`, u1, . . . , uL) is sent to
A. Note that the master secret key hτ0 = gα

L+1
is unknown

to C.
• Key Update: C does not need to simulate anything other

than tracking the current time period t.
• Signing Phase: In this phase, we first describe how to

respond to the signing query for the policy P in time
period t , t∗. Then, describe the case t = t∗ and P��|=P∗.
In the following, the above queries are simulated:

• Case I: t , t∗ and P��|=P∗: It is not hard to learn
that w , w∗ and Pi , P∗i . Then let w′ = w1|| . . . ||wk

represent the shortest prefix of w that is not w∗. We
describe how C can derive a valid key bskP ,w′ . Based
on it, we can easily get both bskP ,w and a signature
for t. Recall that bskP ,w′ has the structure

bskP ,w = (a, {bi}i∈I , d, {ei}i∈[k+1,L])

= (hτ0 ·
Y

i∈W(P)

Hi(Pi)ri ·

0@u0

kY
j=1

uw j
j

1Ar

,

gr1 , . . . , gri , gr, ur
k+1, . . . , u

r
L)

for uniformly distributed values of r, r1, . . . , {ri}i∈I .
Focusing on the first part a first, we can get that

a = hτ0 ·

0@u0

kY
j=1

uw j
j

1Ar

·
Y

i∈W(P)

Hi(Pi)ri

= Aα
L ·

0@0@gγ0

L−1Y
j=1

A
−w∗j
L− j+1

1A ·0@ kY
j=1

(gγ j AL− j+1)wi

1A1Ar

·
Y

i∈W(P)

Hi(Pi)ri

=gα
L+1
·

0@gγ0+
Pk

j=1 γ jw j · Awk−w∗k
L−k+1 ·

L−1Y
j=k+1

A
−w∗j
L− j+1

1Ar

·
Y

i∈W(P)

((gα)Pi−P∗i gαi )ri ,

where the above equation holds due to the fact w j =

w∗j for 1 ≤ j < k and wk , w∗k. Let us denote the three

factors in
�

gγ0+
Pk

j=1 γ jw j · Awk−w∗k
L−k+1 ·

QL−1
j=k+1 A

−w∗j
L− j+1

�
as E1, E2, E3 and let E =

Q3
i=1 Ei. If we set r =

r + αk

w∗k−wk
mod q for a random r′ ∈ Zp, then we can

get

a = gα
L+1
· Er′ · E

αk
w∗k−wk ·

Y
i∈W(P)

Hi(Pi)ri .

In more detail, E
αk

w∗k−wk can be computed as the prod-
ucts of:

E
αk

w∗k−wk

1 = A
γ0+

Pk
j=1 γ jw j

w∗k−wk

k ,

E
αk

w∗k−wk

2 = A−α
k

L−k+1 = g−α
L+1

,

E
αk

w∗k−wk

3 =

L−1Y
j=k+1

A
−w∗j

w∗k−wk

L− j+1 =

L−k−2Y
j=0

A
−w∗k+1+ j

w∗k−wk

L− j .

As described above, it is straightforward to see that
a can be computed for 1 ≤ k ≤ L− 1. The other key
components can be efficiently computed as:

bi = gri , d = gr′A
1

w∗k−wk

k ,

e j = ur′
i · AL+k− j+1 = ur′

k+ j+1 · AL− j,

where i ∈ I and j = 0, . . . ,L − k − 1.
From the key bskP ,w′ = (a, {bi}i∈I , d, {ei}i∈[k+1,L]) for
w′, C can produce a new key bskP ,w for w and create
a signature as that in the real signing algorithm.

• Case II: t , t∗ and P |= P∗: This case is
almost identical to that in Case I except the part ofQ

i∈W(P)Hi(Pi)ri =
Q

i∈W(P) gαiri . That is,

a = hτ0 ·

0@u0

kY
j=1

uw j
j

1Ar

·
Y

i∈W(P)

Hi(Pi)ri

= Aα
L ·

0@0@gγ0

L−1Y
j=1

A
−w∗j
L− j+1

1A·0@ kY
j=1

(gγ j AL− j+1)wi

1A1Ar

·
Y

i∈W(P)

gαiri

=gα
L+1
·

0@gγ0+
Pk

j=1 γ jw j · Awk−w∗k
L−k+1 ·

L−1Y
j=k+1

A
−w∗j
L− j+1

1Ar

·
Y

i∈W(P)

gαiri .

As illustrated as those in Case I, here we omit the
above process. Hence, it is easy to conclude that the
key bskP ,w′ = (a, {bi}i∈I , d, {ei}i∈[k+1,L]) for w′ can be
produced. Based on this key, C can generate a new
key bskP ,w for w and create a signature as that in the
real signing algorithm.

• Case III: t = t∗ and P��|=P∗: For the signing key query
with t = t∗ and P��|=P∗, C can produce the secret key
using a similar way as above, apart from the fact
that Pi , P∗i instead of wk , w∗k. Namely, letting
w = t||0L−1−|t|, if we seteri = ri−

αL

Pi−P∗i
, C can produce

the signing key as

a = hτ0 ·

0@u0

kY
j=1

uw j
j

1Ar

·Hi(Pi)ri · h
−αi

Pi−P∗i
0

= Aα
L ·

0@0@gγ0

L−1Y
j=1

A
−w∗j
L− j+1

1A·0@L−1Y
j=1

(gγ j AL− j+1)wi

1A1Ar
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· h
−αi

Pi−P∗i
0 · ((gα)Pi−P∗i gαi )ri

= gα
L+1
·

�
gγ0+

Pk
j=1 γ jw j

�r

· h
−αi

Pi−P∗i
0 (gPi−P∗i

1 gαi )
ri−

αL
Pi−P∗i · g

αLαi
Pi−P∗i

= gα
L+1
·

�
gγ0+

Pk
j=1 γ jw j

�r
·Hi(Pi)eri

= hα0 ·
�

gγ0+
Pk

j=1 γ jw j

�r
·Hi(Pi)eri .

Hence, the secret key defined above
for the pattern with the time period t
is skP =

�
a = hα0 ·

�
u0
Qk

j=1 uw j
j

�r
·Q

v∈W(P)\i(Hv(Pv)rv ) · Hi(Pi)eri , b1 = gr1 , . . . , bi−1 =

gri−1 , bi = geri , . . . , b` = grv
�
, d = gr, ek+1 =

ur
k+1, . . . , eL = ur

L where r, r1, . . . , ri−1,eri, . . . , rv

are uniform in Zp. Therefore, C can generate a valid
secret key of the queried pattern in time periods t
for A.

• Hashing: A list L storing the answers of the hash
oracle is maintained by C, which takes charges of
checking the list L for responding to the A’s queries
on the hash value of (m, x). If the value for this query
can be checked, the value as the answer is given to
A; otherwise, C randomly picks ϕ ∈ Zp, inserts the
entry (x,m, ϕ) into the list and returns it to A.

• Signing for selected pattern and time period: For the
pattern P = (P1, . . . ,P`) and t. That is, P either
equals to P∗ or is the subset of P∗ and t = t∗, C
randomly selects ϕ, r0 ∈ Zp and computes x = h−ϕ0 gr0

until no entry (m, x, ϕ) where ϕ∗ , −ϕ is checked.
Then, C randomly chooses r, r1, . . . , ru ∈ Zp and
calculates f = gr, y j = h0

r j , where j ∈ [1, u],
u = |I | = |W(P)| ≤ `. In addition, C computes

z = gr0
1 ·
Qu

j=1 hr jα j

0 · gr
�
γ0+

PL−1
j=1 γiwi

�
. Therefore, it can

be inferred that (x, y1, . . . , yu, z) is a valid signature
in the following:

e

0@g1, h
ϕ
0 · x ·

uY
j=1

yP j
j

1A · uY
j=1

e(y j, h j) · e

0@u0

L−1Y
j=1

ut j
j , g

r

1A
= e

0@gα, hϕ0 · h
−ϕ
0 gr0

uY
j=1

h0
r jP j

1A uY
j=1

e(h0
r j , g−P j

1 gα j )

× e

0@0@gγ0

L−1Y
j=1

A
−w∗j
L− j+1

1A ·0@L−1Y
j=1

(gγ j AL− j+1)wi

1A , gr

1A
= e

0@g, gαr0 ·

uY
j=1

h0
αr jP j

1A · uY
j=1

e(h0
r j , g−P j

1 gα j )

× e
�

g, gr
�
γ0+

PL−1
j=1 γiwi

��
=e(g, gαr0 ) · e

0@g,
uY

j=1

h0
αr jP j

1A · uY
j=1

e(h0
r j , g−P j

1 gα j )

× e
�

g, gr
�
γ0+

PL−1
j=1 γiwi

��

= e

0@g, gαr0 ·

uY
j=1

h0
α jr j · gr

�
γ0+

PL−1
j=1 γiwi

�1A
= e(g, z).

• Signing for any other patterns and time periods: For
the pattern P which is not the subset of P∗ and t , t∗,
C creates the secret key of the pattern via the above
simulations and refers to the signing algorithm to
produce the signature on m.

• Break in: Here C requires to simulate skP ,t, where t � t.
This in turn needs to simulate bskP ,w for all w ∈ Φt, due
to the first property, all of w are neither the prefixes of
t∗ and the prefixes of w∗, thus we can simulate bskP ,w as
before.

• Forgery: A outputs a forgery (m∗, x∗, y∗1, . . . , y
∗
v, f ∗, z∗)

such that (x∗, y∗1, . . . , y
∗
v, f ∗, z∗) is a legitimate signature

on m∗ in time period t∗, where v = |I∗| = |W(P∗)| ≤ `.
• Addressing CDHE problem via the forking lemma:

Similar to that in the forking lemma, the CDHE
problem can be solved by C, which responds A with
the same random value but distinct choices of H to
derive two legitimate signatures (x∗, y∗1, . . . , y

∗
v, f ∗, z∗)

and (x∗, y′1
∗, . . . , y′v

∗, f ′∗, z′∗). These two signatures in
time period t∗ are supposed to be valid signatures
m∗ concerning the hash functions H and H′ having
various values ϕ , ϕ′ on (m, x∗).
For i ∈ [1, v], since yi = bs+ϕ

i , C can compute
(yi/y′i)

(ϕ−ϕ′)−1
to capture bi. Similarly, C can compute

(z/z′)(ϕ−ϕ′)−1
and ( f / f ′)(ϕ−ϕ′)−1

to derive a and d.
In the following, we prove that (h0)α = gα

L+1
=

a/
�Qv

i=1 bαi
i · d

γ0+
PL−1

j=1 γiw∗i
�

holds:

a = hα0 ·
vY

i=1

Hi(P∗i )ri ·

0@u0

L−1Y
j=1

u j

1Ar

= hα0 ·
vY

i=1

[(gτ)(P∗i )ri (g−P
∗
i

1 gαi )ri ]

·

0@gγ0

L−1Y
j=1

A
−w∗j
L− j+1

1Ar

·

0@L−1Y
j=1

(gγ j AL− j+1)w∗i

1Ar

= hα0 ·
vY

i=1

gαi ri · gr
�
γ0+

PL−1
j=1 γiw∗i

�

= hα0 ·
vY

i=1

bαi
i · d

γ0+
PL−1

j=1 γiw∗i .

Based on the above process, it is easily learned that
hα0 = gα

L+1
= a/

�Qv
i=1 bαi

i · d
γ0+

PL−1
j=1 γiw∗i

�
holds.

• Solving CDHE problem without forking lemma: If
we consider the following outsider attacks: i.e., only
adaptive chosen message attacks can be allowed to
launch but the adaptive chosen pattern attacks are
forbidden. To prove the security, only the signing for
any other pattern simulation is required to modify
such that the list L will store the selected s in the
signing phase.
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After the simulation, A outputs a forgery
(m∗, x∗, y∗1, . . . , y∗v, z

∗) such that (x∗, y∗1, . . . , y
∗
v, z
∗) is

a legitimate signature on m∗ in time period t∗. Here,
it is worthwhile to mention that the probability
of obtaining the value of (m∗, x∗) in time period
t∗ without asking is negligible, and C is likely to
know the discrete logarithm of ϕ concerning h0,
where h0 implicitly equals to gα

L+1
. For obtaining

the value of ϕ, three approaches can be found
from the simulations: (1) the signing oracle for
chosen patterns; (2) the signing oracle for any other
patterns; and (3) the hash oracle itself.
Iff when ϕ from the second approach as the query
result is answered to C, the discrete logarithm of
h0 regarding ϕ can be obtained. Under this attack
model, A cannot produce the forged signature via the
first approach. As a result, the probability of getting
the discrete logarithm of h0 regarding ϕ equals to
QS∗/[T (QS∗ +QH)], where QS∗ and QH denote the
number of signature requests for any other patterns,
time periods and hashing, respectively. Due to the
fact that the Key Derivation and Update queries are
not permitted, the probability QS∗/(QS∗ + QH) is a
non-negligible value.
In this case, C can derive (s, x∗) holding hs

0 = x∗

via checking (m∗, x∗) from the list L. Therefore,
for i ∈ [1, v], since yi = bs+ϕ

i , C can compute
y(s+ϕ)−1

i to capture bi. Similarly, C can calculate
z(s+ϕ)−1

and f (s+ϕ)−1
to derive a and d. As proved

before, we can also calculate (h0)α = gα
L+1

=

a/
�Qv

i=1 bαi
i · d

γ0+
PL−1

j=1 γiw∗i
�

. �

Remark 4: We have also rendered the correctness, security
definitions and proofs of our HDS (under CDH, DDH assump-
tions). Due to the limited space, please refer to Supplementary
Material.

VIII. PERFORMANCE EVALUATION

This section begins with a theoretical analysis by comparing
computational and communication costs. Subsequently, we
assess the performance through experimental simulations to
demonstrate the practicality of our solutions.

A. Theoretical Analysis

The computation costs (Comp.Cos) and communication
costs (Comm.Cos) of related works are summarized in TABLE
II, focusing primarily on the most time-intensive operations
such as exponentiation and bilinear pairings. For the sake of
comparison, we define p and e0 as the time required for one
bilinear pairing and one exponentiation in G0/G1, respectively.
Given that different algorithms involve varying parameters,
we also introduce the following definitions: L: the maximum
number of attributes allowed in the system or policy; `(`′): the
maximum number of attributes in the (delegated) pattern or
policy, (here ` ≤ L); L′: the depth of the time-encoded tree;
a/a′: the number of non-wildcards in the original/delegated
pattern; c: the number of non-wildcards in the access policy;

x: the number of non-wildcards in a secret key, which equals
a or a′ since the original or delegated secret key may be used
in the signature algorithm; |Φt|: the length of a set containing
the time t and all the “right-hand siblings” of nodes on the
path from t to the root; k: the length of the string {1, 2}k

indicating the time t. In our comparisons, we mainly choose
to compare our schemes exclusively with [22] and [24] since
the most prominent unstructured scheme [22] realizes similar
functionalities and the methodology [24] is the only structured
one.

From TABLE II, we can easily conclude that our HDS is
almost lower than [22], [24] and FS-HDS in terms of com-
putation and communication costs involving all algorithms. In
[24], there are two schemes: one is a basic signature scheme
called KHA+ and the other one is an improved scheme named
KHA+*. Specifically, as illustrated in TABLE II, it is evident
that the computation costs of KeyDerive and KeyDerive*
in KHA+ and KHA+* [24], as well as in HDS, exhibit a
linear relationship with the number of non-wildcards, while
these costs in FS-HDS are influenced by both the number of
non-wildcards and the time t. Additionally, the computational
expenses of the Sign operation in KHA+, KHA+* and HDS
are affected by the number of non-wildcards in both the access
pattern and the secret key. However, in FS-HDS, these costs
also depend on the time t. Furthermore, the computation costs
of Verify in KHA+, KHA+* and HDS are solely determined
by the number of non-wildcards in the access pattern. In FS-
HDS, the costs are related to the number of non-wildcards
in the access pattern and the time t. We can also learn that
the computation cost of the KeyUpdate only realized in our
FS-HDS is linearly related to both the length of a set |Φt|

and the number attributes in an attribute pattern. Note that
KeyDerive is conducted with the master secret key by authority
and KeyDerive* is performed with his/her secret key by a
delegator.

From TABLE II, we can also draw several conclusions
regarding communication cost comparisons. Specifically, it is
clear that the communication costs of KeyDerive and Key-
Derive* in KHA+, KHA+* and HDS are directly related to
the number of non-wildcards. In contrast, for FS-HDS, these
costs are influenced by both the number of non-wildcards and
the time parameter t. Moreover, the communication costs of
the Sign in KHA+ are determined by the number of non-
wildcards in both the access pattern and the secret key, and
those in KHA+* are constant. However, in FS-HDS, these
costs are influenced solely by the number of non-wildcards
in the access pattern. Additionally, the communication costs
for KeyUpdate in FS-HDS are associated with the number of
non-wildcards in the access pattern and the encoded string
indicating t.

To summarize, KHA+* realizes lower constant-size sig-
nature communication while our FS-HDS can provide lower
computation costs of signature generation and more practical
properties concluded in TABLE I.

B. Experimental Analysis

The experimental performance evaluation was carried out
using Python 3.6.13, Charm 0.43, the PBC-0.5.14 library,
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TABLE II
COMPUTATION AND COMMUNICATION COST COMPARISONS

Fig. 3. Running time for various algorithms when |P |∗ ∈ [30, 50], |P ′ |∗ = 30, |P∗ |∗ = 20.

and OpenSSL 1.1.1. Simulations were performed on a laptop
equipped with an Intel Core i5-11400H CPU @ 2.70GHz
(12 cores) and 16GB RAM, running 64-bit Ubuntu 22.04.4
LTS. Additionally, a Raspberry Pi 4 Model B, featuring
a Broadcom BCM 2711 Quad-core Cortex-A72 (ARM v8)
64-bit SoC @ 1.5GHz and 2GB RAM, running Raspbian,
was used to simulate IoT devices in smart homes [47]. Since
many variables are involved in various algorithms, to better
simulate our experimental performance, we have controlled
unique variables in our simulations and used a binary tree
with its depth 6 for time period encoding. To simplify, we
define the number of wildcards in an attribute pattern hidden
in a secret key as |P |∗, in a delegated secret key as |P ′|, in an
access pattern as |P |∗.

Fig. 3 exhibits a comparative analysis of the running time
for the KeyDerive, KeyDerive*, Sign, and Verify algorithms on
Raspberry Pi 4, within the parameters where |P |∗ ∈ [30, 50],
|P ′|∗ = 30, |P∗|∗ = 20. As seen from Fig. 3(a), the com-
putation time for KeyDerive in KHA+, KHA+*, HDS, and
FS-HDS decreases linearly relative to the number of wildcards

increased in the attribute pattern hidden in the secret key and
those in GM are almost stable. Notably, the costs associated
with these algorithms are proportional to the number of non-
wildcards in the attribute pattern. This is because the pattern
consists of both wildcard and non-wildcard elements, where
an increase in the number of wildcards naturally results in a
decrease in the number of non-wildcards. We can also from
Figs. 3(b), 3(c), 3(d) reveal that the computation overheads
for KeyDerive, Sign, and Verify remain relatively stable across
KHA+, KHA+*, GM, HDS, and FS-HDS. Additionally, the
signature and verification processes in HDS and FS-HDS
demonstrate markedly lower costs when compared to those
in KHA+ and GM, and the verification in KHA+* is slightly
more efficient than that in our HDS and FS-HDS.

Fig. 4 reveals the running time comparisons for KeyDerive,
KeyDerive*, Sign, and Verify algorithms on Raspberry Pi 4
when |P |∗ = 50, |P ′|∗ = 30, |P∗|∗ ∈ [0, 20]. As depicted in
Fig. 4(b), we can observe that the KeyDerive* computation
time in KHA+, KHA+*, HDS, and FS-HDS show a linear
decrease as the number of wildcards in the attribute pattern of
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Fig. 4. Running time for distinct algorithms when |P |∗ = 50, |P ′ |∗ = 30, |P∗ |∗ ∈ [0, 20].

Fig. 5. Running time for different algorithms when |P |∗ = 40, |P ′ |∗ ∈ [10, 30], |P∗ |∗ = 10.

Fig. 6. Communication consumption for various algorithms.

a delegated secret key increases. This is because the pattern
contains both wildcard and non-wildcard elements, and as the
number of wildcards increases, the number of non-wildcards
correspondingly decreases. From Figs. 4(a), 4(c), 4(d), we can
see that the running time for KeyDerive, Sign, and Verify are
consistently stable. In addition, the computation costs of the
signature and verification algorithms in our HDS and FS-HDS
remain lower compared to those in KHA+, GM, and the work
in KHA+* is more efficient than our HDS and FS-HDS in
terms of the Verify algorithm.

Fig. 5 provides insights into the running time efficiency of
KeyDerive, KeyDerive*, Sign, and Verify algorithms on Rasp-
berry Pi 4, with parameters set at |P |∗ = 40, |P ′|∗ ∈ [10, 30],
|P∗|∗ = 10. As shown in Fig. 5(a), it is evident that the
computation costs for these algorithms in KHA+, KHA+*,
GM, HDS, and FS-HDS are essentially stable. Furthermore,
from Figs. 5(c) and 5(d) the costs associated with our signature
and verification algorithms in HDS and FS-HDS continue to
be more efficient than those in KHA+ and GM.

Figure 6 illustrates the comparisons of communica-
tion overhead for conducting Setup, KeyDerive, Key-
Derive*, Sign, and generating corresponding parameters. From
Figs. 6(a) and 6(b), it demonstrates that our HDS and FS-HDS
incur significantly lower communication costs for producing

public parameters and (delegated) secret keys compared to
KHA+ and GM. Furthermore, as shown in Fig. 6(c), it is
evident that the KeyUpdate communication costs in FS-HDS
increase linearly with the number of non-wildcards when the
tree depth remains constant. As indicated from Fig. 6(d), our
HDS and FS-HDS also feature lower communication costs for
signature generation than those in KHA+ and GM but realize
a slightly higher verification communication cost.

Since our FS-HDS is the only solution that incorporates the
KeyUpdate feature, while other systems do not, this capability
significantly enhances the security and flexibility of FS-HDS,
making it particularly well-suited for smart homes. Hence,
we have proceeded with the experimental simulations. Specifi-
cally, for time periods corresponding to the left leaf nodes, the
KeyUpdate execution time reaches up to 1s. In contrast, for the
right leaf nodes, the time required is considerably less, only
0.07s. This significant difference originates from the secret
keys for the time periods corresponding to the right leaf nodes
have been pre-generated by their parent node, whereas those
for the left leaf nodes must be calculated by themselves.

In summary, our FS-HDS incurs significantly lower costs
than KHA+ and GM across both the signature and verification
and provides a slightly higher computation cost than KHA+*,
while also enabling rapid key updates. Since the KHA+,
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KHA+* and GM have demonstrated practicality in smart
home applications through their experimental validation, the
superior efficiency of our FS-HDS system further enhances its
suitability for smart homes, making it more effective for this
application.

IX. CONCLUSION

In this paper, we first suggested an efficient privacy-
preserving hierarchical delegable signature scheme (HDS)
without NIZK proofs, primarily addressing efficient fine-
grained authorization, data integrity, and flexible delegation
in smart homes. Then, we designed the first-ever efficient
forward-secure HDS (FS-HDS) methodology with the effi-
cient HDS as the underlying primitive, which, in addition to
handling the issues that HDS enables in smart homes, also
realizes forward security for key exposure resistance. We also
demonstrated the forward-secure unforgeability of FS-HDS via
comprehensively rigorous security proofs. The effectiveness
and practicability of our methodologies were validated through
experimental simulations for smart homes. In future work,
our efforts will continue to design a more secure versatile
FS-HDS scheme capable of withstanding chosen ciphertext
attacks (CCA) for smart homes. One possible solution is to
incorporate Non-Interactive Zero-Knowledge (NIZK) Proofs
to ensure that any decryption attempt can be verified without
compromising security. Another promising direction is to
develop attribute-specified self-sovereign delegation, which
enables a delegator to selectively control which attributes
within their attribute pattern can be delegated. One potential
solution is to exploit secret sharing and reconstruction tech-
niques to ensure only authorized ones can reconstruct complete
permissions.
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