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Abstract— Authentication and key agreement are two basic
functionalities to guarantee secure network communications,
which are naturally integrated as an Authentication and Key
Agreement (AKA) protocol. AKAs usually either need a dedicated
device to store a cryptographic key or require the user to
remember a password. In recent years, AKAs built on biometrics,
e.g., human fingerprints, have gained research attention since
they avoid these issues. Unlike keys or passwords that can be
updated, biometrics are at greater risk that cannot be reused
once disclosed. However, existing mechanisms either explicitly
expose the biometrics to the server or consume a massive
amount of resources. This paper proposes UFinAKA, a privacy-
preserving fingerprint-based authentication and key agreement
system with updatable blind credentials. UFinAKA explores
a fingerprint-based blind credential authentication scheme as
a building block such that the server has no access to the
fingerprint data hidden within the credential. Furthermore,
UFinAKA provides an updatable fingerprint-based credentials
AKA protocol, which allows the server to update the blind
credentials and guarantees anonymous fingerprint authentica-
tion to mitigate further leakage when the server is corrupted.
We perform security analysis and experimental evaluation on
UFinAKA. The evaluation results show that UFinAKA requires
only linear computation overhead for the client, a single round
of interaction, and roughly linear computation and storage cost
for the server. The running time of UFinAKA is at least 4 times
faster than the state-of-the-art solutions, and the storage cost of
these solutions is at least 100 times more than UFinAKA.

Index Terms— Fingerprint, authentication and key agreement,
updatable, privacy-preserving.
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I. INTRODUCTION

SECURE network communication is a critical require-
ment of online services, such as online shopping, online

healthcare, and finance, protecting the enormous amounts of
sensitive user data in such services. As fundamental com-
ponents of secure network communications, authentication
provides assurance on the identities of participants involved
in the communications, while key agreement provides data
security during communication sessions against unauthorized
parties. Conventionally, authentication and key agreement are
achieved using separate protocols, such as in IP Security Inter-
net Key Exchange (IPSec IKE) [1]. In response to the need for
both functionalities in most services, integrated authentication
and key agreement (AKA) protocol that achieves both goals
simultaneously has emerged, e.g., in mobile networks [2].

Traditional AKAs usually verify the user identity by vali-
dating a secret key stored within a terminal, which may be
manipulated by an attacker and is not convenient when the
user loses or wants to change the terminal [3]. Password-
Authenticated Key Agreement (PAKA) [4], [5], [6], [7], [8]
appeared to establish a cryptographic key based on the knowl-
edge of a shared password. However, PAKA is inherently
vulnerable to weak passwords, and the users need to put
in the effort to remember multiple passwords in daily life.
Compared with existing methods, the unique biometrics of
human beings provide convenient tools for authenticating
human users without storing or remembering their identity
credentials. In recent years, biometric-based AKAs emerged
and have gained popularity [3], [9], [10], [11], [12], [13], [14],
[15]. As the General Data Protection Regulation (GDPR) [16]
has classified biometric data as sensitive data to be protected,
those biometric AKAs that require the server to store biometric
data [9], [10], [11], [12] may be exploited by an adversary once
the server is compromised. Erwig et al. [13] proposed Fuzzy
Asymmetric Password-Authenticated Key Exchange (fuzzy
aPAKE) protocols, but they need frequent interactions between
participants, and are only suitable for biometric characteristics
in the form of strings, e.g., iris. Wang et al. [3] proposed a
one-round Biometrics-Authenticated Key Exchange (BAKE)
framework. Nevertheless, BAKE is designed for end-to-end
communications where the server plays the role of a forwarder,
not for Client/Server scenarios where the server is semi-honest
but may be compromised.

Our goal is to propose a novel fingerprint AKA system to
improve security and efficiency by mitigating the above issues.
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We focus on biometric fingerprint because the fingerprint is
the most promising biometric for AKAs mainly due to its reli-
ability, ease of use, low-cost capture scanners, and historical
employment in border control and law enforcement. However,
integrating the fingerprint in AKA is not trivial. Specifically,
this paper focuses on addressing the following three critical
challenges: 1) Credential privacy disclosure. We require
that the credential is constructed based on a fingerprint while
keeping the fingerprint private. Nevertheless, an adversary may
infer information from this credential if the fingerprint is not
well-processed [17], [18], [19]. Traditional standard encryption
(e.g., AES [20]) may result in low accuracy because two scans
of the same fingerprint are rarely identical. Thus, the credential
should be blind for the server to preserve fingerprint privacy
while guarantee authentication accuracy in the face of noises
in realistic environments. 2) Credential embezzlement risk.
Considering the potentially compromised server and insecure
communication channel, an adversary can obtain data from
different parts of the AKA. That is, the credential database
may be compromised and embezzled to impersonate the roles
in the AKA [21], [22]. We require the AKA to prevent
further disclosure by updating the credentials and providing
anonymous authentication once the corruption is detected.
3) Expensive operation issue. Existing research generally
utilizes resource-consuming cryptographic techniques, such as
Garbled Circuit (GC) [23], [24] and Homomorphic Encryption
(HE) [25], [26] which are not suitable for mobile devices with
limited computing power and battery. The AKA should be
lightweight in terms of computation overhead, and minimize
the interactions between the user and authentication server.
In this paper, we propose a privacy-preserving Updatable
Fingerprint-based blind credentials AKA system, named UFi-
nAKA, to address these challenges by making the following
main contributions:
• To prevent the credential privacy disclosure, we pro-

pose a Fingerprint-based Blind Credential Authentication
(FBCA) scheme as a building block for UFinAKA,
where a fingerprint is transformed into a rotation-invariant
template hidden in a blind credential. This algorithm
guarantees that an adversary cannot infer useful finger-
print information from the blind credential.

• To mitigate the credential embezzlement risk, UFinAKA
provides an updatable fingerprint-based blind creden-
tials AKA protocol, which prevents further leakage by
updating the compromised credentials and guarantees
anonymous authentication. The AKA requires neither the
trusted server nor the trusted channel. This enables UFi-
nAKA to self-recover from corruption once the corruption
is detected, incurring no additional operations for the
client.

• To solve the expensive operation issue, UFinAKA is
instantiated with computationally lightweight crypto-
graphic tools, e.g., the garbled Bloom filter. UFinAKA
involves only a single round of interaction and linear
computation complexity during the process of AKA.

• We analyze the security of UFinAKA in theory. Besides,
we implement a prototype and evaluate the performance
of UFinAKA with realistic fingerprint databases. The run-

TABLE I
COMPARISON WITH THE STATE-OF-THE-ART SOLUTIONS

Fig. 1. System model.

ning time/storage cost of UFinAKA is at least 4 times/100
times less than [10], [14], and [13].

TABLE I compares UFinAKA to other state-of-the-art bio-
metric AKA solutions. In the rest of this paper, Section II
shows the problem statement, including the system model,
threat model, and design goals. We give the basic notation
and primary background knowledge in Section III. Section IV
describes the technical roadmap, system architecture, and
interfaces. We depict the main technical details of UFinAKA
in Section V, and give the security analysis and evaluation in
Section VI and Section VII, respectively. Section VIII reviews
related work, and Section IX concludes this paper.

II. PROBLEM STATEMENT

A. System Model

This work seeks to achieve a two-party integrated authenti-
cation and key agreement system. There are two participants
in our model (Fig. 1): the client and the server. The client
registers to the server with a blind credential in which
a fingerprint template is hidden. The blind credentials are
maintained in a credential database by the server. Sometimes
we use the term “user” instead of “client”, which refers to
a human who possesses the fingerprint and manipulates the
client. When the client initiates a session request to the server,
they execute a fingerprint AKA protocol to negotiate on a
session key, establishing a secure communication channel.
If the credential database is compromised, the server can
self-recover by updating the credential database independently
once the corruption is detected. This model applies to the
Client/Server scenarios, e.g., online shopping.

B. Threat Model

From the practical perspective, we require the fingerprint
template and the agreed session key to be protected in the
face of the following security assumptions.
• Safeguarded Client. The client honestly processes the

users’ fingerprint data in a safeguarded environment,
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strictly abides by the protocol, and does not reveal its
fingerprint data to the adversary.

• Potentially Compromised Server. The server is vulner-
able to an adversary, who tries to learn more information
about the client, and can obtain all the credentials and
even the secret items stored on the server.

• Insecure Channel. We assume the communication chan-
nel between the client and server is not secure when the
client and server negotiate on a secret session key. All
transmitted messages on the insecure channel could be
eavesdropped on, tampered with, or forged.

C. Design Goals

UFinAKA aims to provide fingerprint AKA protocol to
secure network communications in the Client/Server scenarios
with the following properties.
• Blind Credential. The fingerprint is processed and pro-

tected in the blind credential against the server.
• Updatable Fingerprint-based Blind Credentials AKA.

The server and the client negotiate a shared secret session
key with mutual authentication. The server can update the
credential database independently to exclude the lost ones
once a credential disclosure attack is detected.

• Anonymous Authentication. The server authenticates
the user without knowing his identity.

• Lightweight and Low Interactions. Both the commu-
nication and computation overhead should be low, which
is critical for practical applications.

III. PRELIMINARIES

A. Notation

We denote the security parameter as λ ∈ N where N is the
set of all natural numbers, and denote the number of minutia
points that a fingerprint template contains as n ∈ N. Given a
set {ri}n that is converted from a fingerprint, we refer to its
ith element as ri and denote the set of size n as {}n. All cyclic
groups G of prime order q and generators g ∈ G mentioned
in this paper are generated as referred to Section 9.3.1 in [20].
We write sk ∈R Zq to represent an element sk being sampled
uniformly at random from Zq where Z is the set of all integers,
and q is a prime.

B. Garbled Bloom Filter

Bloom filter [27] is a probabilistic compact data structure
for testing set membership. Specifically, a Bloom filter is
formed by an array of p bits which represents a set of
at most n elements, and a set of m independent uniform
hash functions H = {h0, . . . , hm−1} which map elements
to the index numbers uniformly over the range [0, p − 1].
Dong et al. [28] designed a variant Garbled Bloom Filter
(GBF) consisting of two algorithms (GBF.Build, GBF.Query).
In a (p, n,m, H)-GBF , each position GBF [i] (i ∈ [0, p −
1]) stores a λ-bit string. We slightly devise the GBF such
that the server can store a pair set {(xi, yi)}n within a
GBF. The algorithm GBF.Build({(xi, yi)}n, p, n, m, H, λ)→
GBF satisfies

⊕m−1
j=0 GBF [hj(xi)] = yi, and positions that

are not mapped by {(xi, yi)}n are chosen uniformly. The
algorithm GBF.Query(GBF, xi, m,H) → yi outputs yi =⊕m−1

j=0 GBF [hj(xi)] (i ∈ [1, n]) to the client.

C. Verifiable Secret Sharing

Shamir’s (t, n) secret sharing scheme [29] splits a secret
value tok into n shares with the property that any t or
more than t shares can recover tok , while any less than
t shares reveal no information about tok . We use Feld-
man Verifiable Secret Sharing (VSS) scheme to provide the
above functionality, and further verify the validity of shares.
The VSS scheme consists of three algorithms (VSS.Share,
VSS.Verify, VSS.Recon). The share generation algorithm
SS.ShareGen(tok , t, n) → ({tok i}n, {com}t) splits a secret
tok into n shares {tok i}n, and generates t commitments
{com}t. The verify algorithm VSS.Verify({com}t, tok i) →
0/1 checks whether the share tok i (i ∈ [1, n]) is valid or not.
The reconstruction algorithm SS.ShareRecon({tok i}n, t) →
tok outputs the recovered tok as long as the number of valid
shares is not less than the threshold t.

D. Minutiae-Based Fingerprint Representation

The fingerprint is a unique pattern of ridges and valleys
on the surface of an individual finger. Minutiae points [30]
are defined as the positions of local discontinuities where the
ridge splits or ends. To extract high-accuracy minutiae with
varied-quality fingerprint images, the segmentation algorithm
first separates the foreground from the noisy background.
Then, the original ridge flow pattern is kept with an image
enhancement algorithm without introducing false information.
Finally, minutiae points are located accurately with binarized
minutiae extraction methods. Minutiae points are typically
represented as follows: 1) an X-coordinate, 2) a Y -coordinate,
3) an orientation θ, corresponding to the angle between the
minutiae ridge and the horizontal line measured in degrees.

IV. AN OVERVIEW OF UFINAKA

A. Technical Roadmap

We introduce the primary considerations and technical line
in designing UFinAKA as follows.

1) A Naïve Solution: Plain Fingerprint AKA. Following
the research line of [11], we begin with a plain fingerprint
authentication and key agreement system that is vulnerable to
fingerprint credential privacy disclosure (Fig. 2a). This naïve
solution works as follows. In the initialization phase, the
server initializes the whole system by producing the public
parameters pp. In the registration phase, a client registers with
its plain fingerprint template by storing the template as the
credential on the server. In the AKA phase, the client requests
to the server; the server retrieves the corresponding credential,
then binds the template with tok and sends it to the client,
where tok is a randomly-chosen secret; the client recovers
tok with its correct fingerprint, and a secret session key K
is negotiated based on this shared tok between the client and
the server. In this solution, the credential directly discloses
fingerprint data if it is lost. The breached fingerprint data
can no longer be used for authentication because anyone who
possesses it can impersonate the client.
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Fig. 2. Technical Roadmap.

2) Fingerprint-Based Blind Credential Authentication:
Fingerprint-based Blind Credential Authentication (FBCA,
Fig. 2b). A natural approach to protecting the fingerprint is
to encrypt/hash the template (e.g., AES/SHA-256). However,
the fingerprint is not precisely reproducible. Two scans of the
same fingerprint are rarely identical, resulting in two differ-
ent encrypted/hashed templates, which cannot be employed
as credentials. Processing then protecting noisy fingerprints
becomes a significant challenge that UFinAKA is facing.
Current solutions usually depend on heavy cryptographic
primitives, e.g., Garbled Circuit [23], which involves heavy
overhead. To solve this issue, we propose a new primitive,
Fingerprint-based Blind Credential Authentication (FBCA),
which shards a fingerprint into a set of strings {ri}n, and hides
{ri}n as a blind credential {bi}n via encryption. In addition,
the authentication functionality is achieved by transmitting a
secret tok within a GBF by the server to the client, where tok
is retrieved from the GBF only if the client is legal.

3) Updatable Fingerprint-Based Blind Credentials AKA:
Updatable Fingerprint-based Blind Credentials AKA (Fig. 2c).
The FBCA has guaranteed the privacy of the fingerprint
when the blind credential is breached, but still cannot be
reused. Consider an adversary who compromises two creden-
tial databases of two independent systems. Then the adversary
may link the identities by comparing the credentials. UFi-
nAKA addresses this issue in two steps.

• Enabling the server to update blind credentials. The core
idea is that the server maintains a secret update factor
upd which is stored as cupd = Enc(sek, upd) locally
where sek is a standard encryption key. Specifically,
when the server detects a corruption, upd is converted
to upd ′ = upd ∗α and the credential {bi}n is updated as
b′i = bα

i where α ∈R Zq . In addition, the server computes
an auxiliary item w = gupd′ and sends it to the client,
and the client utilizes w to synchronize with {b′i}n using
the new captured fingerprint template. To this end, the
lost credential {bi}n is invalid. Even though the attacker
obtains sek and recovers upd = Dec(sek, cupd), he/she
still cannot obtain upd ′ and {b′i}n because α is randomly
and secretly chosen, and sek is also updated to sek′ in
the update phase. Furthermore, since the update factor is
always random, the credentials of the same fingerprint in
two independent systems are different.

• Providing anonymous authentication. We require the
client generates a different anonymous username every
time, with which the server retrieves the same corre-
sponding credential. In detail, the user chooses a random
ϖ ∈ Zq , then obtains the anonymous username composed
of IDC = gh(IDC ) ⊕ (gsk)ϖ and gϖ, where IDC is the
username, h : {0, 1}∗ → Zq is a hash function, gsk

is the public key of the server. Upon receiving IDC,
gϖ, the server computes ΨIDC = IDC ⊕ (gϖ)sk where
sk ∈R Zq . The anonymous username IDC, gϖ is always
different, while the server recovers the same identifier
ΨIDC

with sk, and updates it along with the credential by
using upd . Therefore, the adversary cannot link accounts
with the compromised identifiers and credentials.

Mitigating server impersonation attacks (Fig. 2c). There
is a problem that UFinAKA is still vulnerable to server
impersonation attacks where the adversary maliciously plays
the role of the server with stolen {bi}n. This issue occurs
because we verify the client identity via fingerprint, but have
no verification about the server. UFinAKA addresses this issue
by attaching a succinct identity proof (digital signature) for the
server. In detail, the server possesses a private key sk ∈R Zq

and a public key gsk, where g is a generator of a cyclic
group G of prime order q; the identity proof η = rS + l · sk
where rS ∈R Zq , grS is public, and l is generated via the key
agreement by both the client and server; the client identifies
the server by checking whether gη = grS ·(gsk )l. Furthermore,
if the private key sk is also stolen, the server updates {bi}n,
sk and the public gsk to invalidate the lost ones. Thus, the
server impersonation attack no longer works.

Low computation overhead and interaction rounds (Fig. 2c).
In UFinAKA, we require that an adversary cannot obtain infor-
mation about the fingerprint template and the agreed session
key from the transcripts delivered on the insecure channel.
In addition, it should be practical enough for reality. On the
one hand, UFinAKA provides a single-round AKA protocol
by proposing the single-round primitive, FBCA. It is critical
in practice since network latency is a significant bottleneck
in secure communications, especially over mobile networks.
On the other hand, to strive for excellent user experience,
UFinAKA costs minor computation resources by employing
lightweight cryptographic techniques (e.g., the garbled Bloom
filter) in FBCA construction. The single-round interaction
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Fig. 3. Architecture of UFinAKA.

and linear computation complexity imply that UFinAKA is
suitable for real-world applications.

B. The System Architecture of UFinAKA

UFinAKA intends to provide an updatable fingerprint-based
blind credentials AKA system to guarantee secure commu-
nications. We propose a new primitive, Fingerprint-based
Blind Credential Authentication (FBCA) as a building block.
As Fig. 3 shows, UFinAKA includes the following four
phases. The first two phases act as system preparation, and the
remaining two phases present the main process of an updatable
fingerprint-based blind credentials AKA.

1) In the initialization phase, the server generates the public
parameters and the master key.

2) In the registration phase, the client registers to the server
with its fingerprint-based blind credential, and erases the
local storage of the terminal. The server receives and
stores the credential.

3) In the AKA phase, the server and the client negotiate on
a session key by running a fingerprint AKA protocol.
More specifically, the server authenticates the client
with the client’s fingerprint, while the server proves the
identity with a proof of the possession of a master key.

4) In the update phase, the server can update the compro-
mised credentials without raising additional computation
overhead for the client.

C. FBCA Interface

The FBCA scheme provides fingerprint privacy preser-
vation, fingerprint error tolerance, and implicit fingerprint
authentication, which is defined as follows.

Definition 1 (Fingerprint-Based Blind Credential Authen-
tication): A fingerprint-based blind credential authentication
scheme FBCA consists of five Probabilistic Polynomial Time
(PPT) algorithms (Setup, Shard, Hide, Token, Auth) that
satisfies the correctness property below.
• Setup(1λ, τ)→ par: On input a security parameter λ ∈

N and a threshold τ ∈ N, this setup algorithm outputs
the public parameter par, which are implicit inputs to
the following algorithms.

• Shard(finp) → {ri}n: On input the fingerprint image
finp, this fingerprint sharding algorithm outputs a string
set {ri}n as the template.

• Hide({ri}n)→ {bi}n: On input the template {ri}n, this
hiding algorithm outputs the blind credential {bi}n.

• Token({bi}n, tok) → ht: On input the blind credential
{bi}n, a secret tok , this token algorithm outputs a hidden
token ht.

• Auth(ht, {r∗j }n) → tok/ ⊥: On input a hidden token
ht and the regenerated fingerprint template {r∗j }n, this
error-tolerant authentication algorithm outputs a token
tok or ⊥.

Correctness: For any λ ∈ N, any par ← Setup,
any fingerprint templates {ri}n ← Shard(finp) and
{r∗j }n ← Shard(finp∗) where finp and finp∗ are captured
from the same fingerprint, any blind credential {bi}n ←
Hide({ri}n), we have tok ← Auth(ht, {r∗j }n) where ht ←
Token({bi}n, tok).

Remark 2 To intuitively aid understanding, we tailor FBCA
for the fingerprint to show the technical intuition. Actually, this
method applies to any other noisy factors (e.g., environment)
that can be transformed into a template represented as a set.

D. UFinAKA Interface

We design UFinAKA to guarantee secure communications
in the Client/Server scenarios, which is defined as follows.

Definition 3 (Updatable Fingerprint-Based Blind
Credentials Authentication and Key Agreement): An
updatable fingerprint-based blind credentials AKA
authentication and key agreement system UFinAKA contains
seven PPT algorithms (GlobalSetup, CreateRegistration,
RecordRegistration, CreateRequest, CreateResponse,
DeriveToken, UpdateDB) satisfying the correctness property.

Initialization Phase:
• GlobalSetup(1λ) → (pp, mk): This algorithm is run

by the server, it takes as input a security parameter
λ, outputs the public parameters pp containing all the
parameters this system needs and a master key mk, where
pp are implicit inputs to the following algorithms, but mk
is held secretly by the server.

Registration Phase:
• CreateRegistration(finp) → Reg: This algorithm is run

by the client, it takes a fingerprint image finp as input,
outputs a registration request Reg that is transmitted to
the server.

• RecordRegistration(Reg , sk,DB) → {0, 1}: This
algorithm is run by the server, it takes as input a reg-
istration request Reg , a credential database DB , outputs
0 if Reg is not a fresh request, otherwise outputs 1.

AKA Phase:
• CreateRequest(finp∗) → (LS ,Req): This algorithm is

run by the client, it takes as input a fingerprint image
finp∗, outputs a local state LS that is temporarily stored
in a safeguarded environment, and an authentication
request Req that is transmitted to the server.

• CreateResponse(DB ,Req) → (Res, KIDC
): This

algorithm is run by the server, it takes as input a
credential database DB, an authentication request Req ,
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Fig. 4. Diagram of fingerprint sharding.

outputs an authentication response Res , and a session
key KIDC

.
• DeriveToken(LS ,Res) → K∗

IDC
/ ⊥: This algorithm

is run by the client, it takes as input a local state
LS , and an authentication response Res , outputs a ses-
sion key K∗

IDC
if the authentication successes, otherwise

outputs ⊥.
Update Phase:
• UpdateDB(DB , mk)→ (pp′,DB ′, mk′): This algorithm

is run by the server, it takes as input a credential
database DB , a master key mk, outputs updated items
(pp′,DB ′, mk′).

Correctness: For any λ ∈ N, any (pp, mk)← GlobalSetup
(1λ), any fingerprint images finp, finp∗ and their templates
{ri}n, {r∗j }n, any set intersection threshold t ≤ n contained
in pp, any Reg ← CreateRegistration(finp) that is recorded
in DB by RecordRegistration, we have KIDC

= K∗
IDC

if the
size of {ri}n ∩ {r∗i }n is not less than t, where

– (LS ,Req)← CreateRequest(finp∗),
– (Res, KIDC

)← CreateResponse(DB ,Req),
– K∗

IDC
← DeriveToken(LS ,Res).

Remark 4: For the UpdateDB algorithm, we require that
the above correctness property is still satisfied once the
UpdateDB algorithm is invoked.

V. UFINAKA: UPDATABLE FINGERPRINT-BASED BLIND
CREDENTIALS AKA

A. FBCA Construction

We design a concrete FBCA construction as a building
block for UFinAKA, and give the technical description and
construction as follows. The Setup algorithm outputs the
public parameter par = (γ, τ, G, q, g, p, n, m, H) where γ is
the number of minutiae points that a fingerprint string involves,
τ is the threshold of Hamming distance between two strings,
G is a cyclic group of prime order q, and g is a generator of
G, (p, n,m, H) are parameters for the garbled Bloom filter.

1) Fingerprint Sharding: Most research utilizes a
multi-dimensional vector to present a fingerprint [14], [31],
e.g., the FingerCode [32], which is a 640-dimensional vector
of integers. However, FingerCode always causes redundant
overhead in fingerprint authentication, because FingerCode is
rotation variant such that a user usually corresponds to several
FingerCodes in the database. To mitigate this issue, we turn
to the minutiae-based fingerprint representation approach,
which converts a fingerprint into a set of minutiae points.
In addition, we utilize the relative positions of minutiae points
to obtain a rotation-invariant fingerprint template.

Specifically, we first extract n minutiae points {Point i}n in
the X-Y coordinate space, and generate a fingerprint template

Algorithm 1 Encode(finp)→ {ri}n
1: Extract n minutiae points {Pointi}n from finp
2: while Pointi ∈ {Pointi}n do
3: Find the nearest γ points to Pointi
4: Construct γ vectors {vecj

i}γ
5: Compute vector lengths {dj}γ for {vecj

i}γ
6: Compute inter-vector angles {ϕl}γ·(γ−1)

2
in {vecj

i}γ
7: Represent {vecj

i}γ as string ri with {dj}γ and
{ϕl} γ·(γ−1)

2
8: end while

as the Encode algorithm (illustrated in Algorithm. 1) inspired
by [30]. Each minutiae point is initialized as the central point
for exactly one time. Then the straight-line nearest γ points
are chosen to form a structure as shown in Fig. 4. We take
γ = 4 as an example, Point i (i ∈ [1, n]) is the core point,
Pointj

i (j ∈ [1, 4]) is the top γ straight-line nearest points to
Point i. We define vecj

i (j ∈ [1, 4]) as the vector from Point i

to Pointj
i , let dj denote the length of the vector vecj

i , and ϕl

(l ∈ [1, 6]) denote the angles. Then, a string is represented as

ri = d1d2d3d4ϕ1ϕ2ϕ3ϕ4ϕ5ϕ6

concatenated with 10 values. Because this fingerprint sharding
algorithm is based on the relative position of minutiae points,
rotating fingerprint images does not affect the result of finger-
print representation.

2) Fingerprint Hiding: In reality, to preserve biometric
privacy, biometric templates are typically stored secretly in
a trusted environment of the terminal. However, this method
is inconvenient when the user loses the terminal or wants to
change the terminal to a new one. We intend to mitigate this
issue by converting a fingerprint into a blind credential with
which the client registers on the server. Specifically, to protect
the fingerprint template {ri}n against the compromised server,
we generate a blind credential {bi}n by hiding {ri}n with
cryptographic group operations. Considering the operability
of the blind credential, we expect the server could update the
blind credential as discussed in Section IV-A.3. Inspired by the
Diffie-Hellman Key Exchange, for each string ri (i ∈ [1, n])
in a fingerprint template {ri}n, we compute

bi = gri (mod q)

where q is the prime order of a cyclic group G, and g is a
generator of G. We have a blind credential {bi}n in which a
fingerprint template {ri}n is hidden.

3) Fingerprint Token: Generally, when the client wants to
communicate with the server securely, it generates a new
template {r∗j }n for the registered fingerprint, then computes
the set intersection between {gr∗j }n and {bi}n to achieve
fingerprint authentication. However, the server is not allowed
to expose the credential to the client since the client may be
controlled by an adversary, and neither is the client. To solve
this problem, we need to compute the set intersection in a
secure manner. Since two templates of the same fingerprint
are usually different, we combine the Feldman VSS scheme
with the garbled bloom filter to depict the fingerprint token
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Fig. 5. FBCA construction.

algorithm on the server side. We first generate a secret tok ,
then split tok into n shares and generate t (t ≤ n) com-
mitments by employing the Feldman VSS scheme. To further
protect the shares and the credential, we enable the server to
build a garbled bloom filter GBF by putting tok i ⊕ bβ

i on
the positions via hashing bi. In this case, the client can query
GBF to recover tok if the size of the set intersection between
{gr∗j }n and {bi}n is not less than the threshold t of VSS.

4) Fingerprint Authentication: As considered above, the
captured fingerprint is usually noisy, two strings composed
with the same minutiae points are not always identical.
We have introduced the Feldman VSS scheme in the finger-
print token algorithm. However, computing the set intersection
between {gr∗j }n and {bi}n still may result in false results,
because the minor errors lying in a string r∗j (j ∈ [1, n]) also
may affect the authentication result. To improve the authen-
tication accuracy, we use the Hamming distance metric (i.e.,
the number of positions that are different between two strings)
denoted by ham(·, ·) to tolerate the string errors. Specifically,
for each string r∗j , the client finds all strings {r∗j∗}n∗ that
are close to r∗j , and hides them with the fingerprint hiding
algorithm, then queries GBF to obtain and check the validity
of tok shares. Finally, the client recovers tok as long as the
number of valid shares is not less than the threshold t.

5) FBCA Construction: Putting the above technical details
together, we give a concrete instantiation (Fig. 5) of FBCA,
where h : {0, 1}∗ → Zq , and refer to this construction as
FBCA from here onwards.

B. UFinAKA Construction

1) Initialization Phase: The initialization phase initializes
the whole system and generates the system parameters that all
entities need. Specifically, the server runs Algorithm 2, which
takes the security parameter λ as input, outputs the public

Algorithm 2 Initialization
Server: GlobalSetup(1λ)→ (pp, mk)

1: Create the server name IDS

2: (τ, γ, G, g, q)← FBCA.Setup(1λ)
3: Generate the key pair (gsk, sk) where sk ∈R Zq

4: Generate the key sek for symmetric encryption
5: Specify the GBF hash functions H = (h0, . . . , hm−1)
6: Specify the template size n
7: Specify the set intersection threshold t
8: Specify the hash function h : {0, 1}∗ → Zq

9: pp = {IDS , λ, gsk, (τ, γ, G, g, q), H, n, t, h}
10: mk = (sk, sek)

system parameters pp and the master key mk. In real-world
applications, the server could publish pp on a bulletin board
such that all entities in UFinAKA can receive pp, while only
the server maintains the mk locally.

2) Registration Phase: The registration phase shown in
Algorithm 3 is the only part of UFinAKA that runs over an
authenticated channel, which consists of CreateRegistration
and RecordRegistration.

Before any activity, the client registers on the server with
a registration request Reg created by CreateRegistration,
which includes the anonymous username IDC, gϖ and the
fingerprint-based blind credential {bi}n. Specifically, the client
chooses a random ϖ from Zq , then computes IDC =
gh(IDC ) ⊕ (gsk)ϖ and gϖ, where h ∈ pp is a hash function.
To obtain the fingerprint-based blind credential {bi}n, the
client extracts minutiae points {Pointi}n from the user finger-
print, then invokes FBCA.Shard and FBCA.Hide algorithms to
convert the fingerprint into {bi}n. Note that the fingerprint is
processed in a secure environment (e.g., within the trusted
execution environment, a secure area built within the central
processor), and all the fingerprint data are erased after the
registration phase. In other words, the terminal does not need
to store any secret items.

When receiving the registration request Reg from the
client, the server runs RecordRegistration to record it into
the database. The server first needs to determine if Reg =
(IDC, gϖ, {bi}n) is a fresh request by computing ΨIDC

=
IDC⊕(gϖ)sk. The server stores (IDC, {bi}n) in the database
DB if ΨIDC

is not registered, and rejects this request imme-
diately, otherwise. We assume Reg is transmitted through an
authenticated channel, which means no adversary can modify
Reg. The requirement of an authenticated channel is essential
for all AKA protocols [33], which can be implemented by the
Public Key Infrastructure (PKI).

3) AKA Phase: As a principal part of UFinAKA, the AKA
phase shown in Algorithm 4 presents an AKA protocol, which
consists of CreateRequest, CreateResponse, and DeriveToken.

When a user needs to communicate with the server securely,
the client runs CreateRequest to generate and send an AKA
request Req to the server. In detail, Req includes the anony-
mous username IDC

∗, gϖ∗ and a public parameter grC

(rC ∈R Zq) that assists in negotiating a session key with the
server, where the secret rC and grC are stored temporarily as
a local state LS. In addition, the client regenerates a fresh
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Algorithm 3 Registration
Client: CreateRegistration(finp)→ Reg

1: Create the username IDC

2: Generate gϖ, (gsk)ϖ where ϖ ∈R Zq

3: Let IDC = gh(IDC ) ⊕ (gsk)ϖ where h : {0, 1}∗ → Zq

4: {ri}n ← FBCA.Shard(finp)
5: {bi}n ← FBCA.Hide({ri}n)
6: Reg = (IDC, gϖ,{bi}n)
Server: RecordRegistration(Reg , sk, DB)→ 0/1

1: Parse Reg as (IDC, gϖ, {bi}n)
2: Let ΨIDC

= IDC ⊕ (gϖ)sk

3: if ΨIDC /∈ DB then
4: Record (ΨIDC , {bi}n) in DB
5: return 1
6: else
7: return 0
8: end if

fingerprint template {r∗j }n from a newly captured fingerprint
image finp∗, and temporarily stores {r∗j }n in LS. In a real-
world implementation, for better performance, the client may
first transmit the Req , and process the fingerprint in the interval
waiting for the response from the server. Note that LS is
immediately erased after the AKA phase accomplishes, so the
client stores nothing at ordinary times.

Upon receiving Req from the client, the server runs
CreateResponse to generate a response Res . The server
first recovers ΨIDC

= IDC
∗ ⊕ (gϖ∗)sk and retrieves

(ΨIDC
, {bi}n) from DB, then generates a random token

tok ∈R {0, 1}λ, and hides it in a hidden token ht by invoking
the FBCA.Token algorithm, i.e., the server creates a GBF to
transmit tok to the client in a secure manner. Afterwards, the
client creates the shared session key KIDC by hashing the
items (tok , IDS , gh(IDC ), grCrS ) where rS ∈R Zq . In addition,
the server computes c by encrypting IDS using authenticated
encryption under KIDC

, and appends c to Res so that the client
can verify the validity of the shared session key. Finally, the
server proves its identity to the client by generating an identity
proof η.

When receiving Res from the server, the client obtains the
shared session key K∗

IDC
by running DeriveToken. The shared

token tok∗ is derived by invoking the FBCA.Auth, and we
have tok∗ = tok if finp and finp∗ come from the same
fingerprint, and vice versa. The session key K∗

IDC
is obtained

exactly if both c and η are valid. At this point, the client has
established a secure communication channel with the server
under the session key K∗

IDC
= KIDC

.
4) Update Phase: The update phase shown in Algorithm 5

is a novel part of UFinAKA to update the credential database.
Considering the case that once the server is compromised,
all identifiers ΨIDC

, blind credentials {bi}n and even the
master key mk = (sk, sek) may be accessed by the attacker.
An attacker who holds the lost mk may impersonate the server
and break down the system. UFinAKA addresses this issue by
enabling the server updates DB to declare the lost credentials
invalid when detecting the corruption. We introduce an update

Algorithm 4 AKA
Client:CreateRequest(finp∗)→ (LS ,Req)

1: {r∗j }n ← FBCA.Shard(finp∗)
2: Generate (grC , rC ) where rC ∈R Zq

3: LS = ({r∗j }n, grC , rC )
4: Generate gϖ∗ , (gsk)ϖ∗ where ϖ∗ ∈R Zq

5: Let IDC
∗=gh(IDC )⊕(gsk)ϖ∗ where h : {0, 1}∗→Zq

6: Req = (IDC
∗, gϖ∗ , grC )

Server:CreateResponse(DB ,Req)→(Res,KIDC
)

1: Parse Req as (IDC
∗, gϖ∗ , grC )

2: Recover ΨIDC
= IDC

∗ ⊕ (gϖ∗)sk

3: Retrieve DB for (ΨIDC
, {bi}n)

4: Generate tok ∈R {0, 1}λ
5: ht← FBCA.Token({bi}n, tok)
6: Generate (grS , rS ) where rS ∈R Zq

7: Compute grC rS = (grC )rS

8: KIDC
= Hash(tok , IDS , ΨIDC

, grC rS )
9: c = AuthEnc(KIDC

, IDS )
10: l = Hash(grS , grC )
11: η = rS + l · sk (mod q)
12: Res = (ht, c, grS , η)

Client:DeriveToken(LS ,Res)→ K∗
IDC

/ ⊥
1: Parse Res as (ht, c, grS , η)
2: Parse LS as ({r∗j }n, grC , rC )
3: tok∗ ← FBCA.Auth(ht, {r∗j }n)
4: Compute grC rS = (grS )rC

5: K∗
IDC

= Hash(tok∗, IDS , gh(IDC ), grC rS )
6: IDS

∗ = AuthDecK∗IDC
(c)

7: l∗ = Hash(grS , grC )
8: if IDS

∗ = IDS & gη = grS · (gsk )l∗ then
9: return K∗

IDC

10: else
11: return ⊥
12: end if

factor upd that is initially set as upd = 1 for the server,
and store two auxiliary parameters cupd = Enc(sek, upd),
wC = gupd in DB , where sek is a standard encryption key.
All users’ credentials are updated with the same upd , and
the client utilizes wC to synchronize the fingerprint template
{r∗i }n with its blind credentials, i.e., w

r∗i
C = gr∗i ·upd . In a

nutshell, the server randomly generates a new master key
mk′ = (sk′, sek′) to exclude the compromised one, and picks
a random α ∈ Zq to update ΨIDC

, {bi}n, pp, cupd , and wC .
We emphasize that the above operations should be per-

formed only when the attacker is no longer in control of the
server. Since the server has made the lost mk = (sk, sek)
invalid and generates the new random mk′ = (sk′, sek′),
we conclude that even though the attacker has mk, he/she
still cannot obtain the new credential {b′i}n = {bα

i }n unless
he/she corrupts the server again and obtains the new standard
encryption key sek′. The server could perform update oper-
ation periodically or immediately when detecting the DB is
compromised. Note that this process involves only the server,
and the client is not required to perform additional operations.
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Algorithm 5 Update
Server:UpdateDB(DB ,mk)→(pp′,DB ′,mk′)

1: Parse mk as (sk, sek)
2: Generate the new key pair (gsk′,sk′) where sk′∈R Zq

3: Generate the new symmetric key sek′ ∈R Zq

4: while (ΨIDC , {bi}n) ∈ DB do
5: Retrieve the corresponding (cupd , wC) in DB
6: upd ← Dec(sek, cupd)
7: Pick α ∈R Zq

8: while bi ∈ {bi}n do
9: Compute b′i = bα

i

10: end while
11: Compute upd ′ = upd ∗ α, w′C = gupd′

12: cupd′ = Enc(sek′, upd′)
13: Compute Ψ′IDC

= Ψα
IDC

14: Store (Ψ′IDC
, {b′i}n), (cupd ′, w′C) in DB ′

15: end while
16: pp′ = {IDS , λ, gsk′ , (τ, γ, G, g, q), H, (t, n)}
17: mk′ = (sk′, sek′)

VI. SECURITY ANALYSIS

Below, we analyze the security of UFinAKA using the
simulation paradigm [34]. The simulation paradigm aims at
showing that the adversary cannot distinguish the protocol
from a random distribution with non-negligible advantage,
without breaking certain cryptographic assumptions. The proof
allows the adversary to implement an arbitrary side of the
protocol, and use previously valid agreements as references,
in order to cover a wide range of attacks including man-in-the-
middle attacks, dictionary attacks, replay attacks, etc. We use
AdvA(λ) to denote the advantage of a PPT adversary A, and
define the security of UFinAKA under the threat model with
a safeguarded client, a potentially compromised server, and an
insecure channel.

Definition 5: UFinAKA is considered to be secure if for
every fingerprint dictionary D with size ∥D∥ and for any PPT
A that makes at most Q(λ) online dictionary attacks, it holds
that AdvA(λ) ≤ Q(λ)/∥D∥+ negl(λ).

In UFinAKA, we employ an FBCA scheme that is secure
based on the Decisional Diffie-Hellman (DDH) assumption.
In a nutshell, DDH-assumption implies that no PPT adversary
can computationally distinguish the following two distribu-
tions (g, ga, gb, gab) and (g, ga, gb, gc), where a, b, and c are
randomly and independently chosen from Zq .

Theorem 6: UFinAKA is secure with the advantage
AdvA(λ) ≤ Q(λ)/∥D∥+ negl(λ) if FBCA is secure and all
the hash functions are modelled as random oracles.

Proof: (Sketch) A simulator S is constructed to run an
adversaryA, and it can simulate the view of an honest server in
an interaction with an honest client. Concretely, the simulator
S generates the transcripts and handles the following steps:
• S retrieves (ht, c, grS , η) from an honest server. In reality,

ht = (GBF, v) where GBF stores (bi, tok i ⊕ bβ
i ), bi =

gri (i ∈ [1, n]), and v = gβ for the random number β.
• S randomly samples {ŕi}n and calculates {vŕi}n, {gŕi}n.
• S samples a dummy ´tok i randomly rather than computing
{yi ⊕ vri}n in the real case. S then computes {ýi =
´tok i ⊕ vŕi}n using the sampled { ´tok i}n for i ∈ [1, n].

• S checks whether ýi = ´tok i ⊕ vŕi is identical to the
dummy yi in GBF for i ∈ [1, n] in the real case.
If validation is true, S then recovers bi by calculating gŕi .

• S samples a random ŕC and computes gŕC , then S
computes ´KIDC

via Hash({ ´tok i}n, IDS , ΨIDC
, gŕC rS ).

• S finally outputs the transcript
(
gŕC , (( GBF ( { bi, tok i⊕

bβ
i }n), v), c, grS , η), tok , ´KIDC

)
with probability

1/Mn. Indeed, the transcript is
(
gŕC , ((GBF ({gŕi ,

´tok i ⊕ vŕi}n), v), c, grs , η), ´tok , ´KIDC

)
. Otherwise, S

outputs the transcript
(
gŕC , ((GBF, v, )c, grS , y),⊥,⊥

)
with probability 1−1/Mn, where we assume the client
responses with probability 1/M for each fingerprint
template.

Below we analyze the security of UFinAKA using the
following hybrids:

Hybird0. Hybird0 captures the real game, and the advan-
tage of the adversary is AdvΠ

A(λ, Q) = AdvHybrid0
A where we

use Π to denote UFinAKA.
Hybird1. Hybird1 is identical to Hybird0 with the excep-

tion of the fingerprint template. In Hybird1, the compromised
server A interacts with the client, and S simulates the tran-
scripts of the client as follows,

• S sends (IDC, grC) to the server where rC ∈R Zq .
• S receives (ht, c, grS , η) from the server where ht =

(GBF, v).
• S extracts minutiae points and creates {r∗i }n, then cal-

culates {vr∗i }n and {gr∗i}n.
• S recovers yi by reading gr∗i from GBF , then attempts

to recover tok i by computing yi ⊕ vr∗i .
• S recovers tok and obtains the session key by computing

K∗
IDC
← Hash(tok , IDS , gh(IDC ), grS ·rC ).

• S aborts if it receives a different (ht, c, grS , η) with prob-
ability 1− 1/Mn. Otherwise, S sends

(
IDC, g

rC, ((GBF

({bi, tok i ⊕ bβ
i }n), v), c, grS , η), {tok i}, K∗

IDC

)
, where

tok i := yi ⊕ vr∗i .

We note that, the transcript
(
IDC, grC , ((GBF ({bi, yi ⊕

bβ
i }n), v), c, grS , η), tok , K∗

IDC

)
outputted by the honest server

is determined by the inner randomness. In this case, the
transcript

(
IDC, grC , ((GBF ({bi, yi ⊕ bβ

i }n), v), c, grS ,
η), tok , K∗

IDC

)
is from the real one. Hence, no adversary A

can distinguish the two games with overwhelming probability.
Namely, the view of the simulator S with the server is
indistinguishable from the real transcript between the client
and the server.

Hybird2. Hybird2 is identical to Hybird1 except that the
client modifies the approach to generate grC . As we know
that we regard grC as a commitment. Hence, Hybird2 and
Hybird1 are statistically indistinguishable via a straightfor-
ward reduction.

Hybird3. Hybird3 is identical to Hybird2 with exception
of the generation of tok . In this hybrid, the client simulates
tok randomly from the uniform distribution with probability
1/λ. Hence, Hybird3 and Hybird2 are statistically indistin-
guishable via a straightforward reduction.

Hybird4. Hybird4 is identical to Hybird3 with the excep-
tion of yi generation. In particular, we modify the approach
to generate yi by computing yi = tok i ⊕ vr∗i rather than
yi := tok i ⊕ bβ

i for i ∈ [1, n], and each tok i is sampled
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TABLE II
ASYMPTOTIC COMPARISON RESULTS

randomly. In this case, the simulator S simulates the finger-
print strings {ri}n from uniform distribution with probability
1/λn, and S is allowed to query the server at most Q(λ)
times. Thus, AdvHybrid4

A (λ) ≤ Q(λ)/λn+negl(λ). In addition,
tok i ⊕ vr∗i is indistinguishable from tok i ⊕ bβ

i because vr∗i

is indistinguishable from bβ
i .

Therefore, the advantage of the adversary is bounded
Q(λ)/λn + negl(λ), and the Theorem 6 is proved.

VII. EVALUATION

A. Asymptotic Comparison

We give the asymptotic comparison with the state-of-the-art
in TABLE II. We use two rows to describe the server’s and the
client’s theoretical performance, respectively, in terms of Tech-
niques, Rounds, Multiplications, Exponentiations, Hashes,
Symmetric Encryption, and Secret Sharing. Each round is
defined as a bi-directional interaction between the client and
the server. Because these representative schemes use different
types of templates, we utilize three distinct parameters (n̄, ñ,
n) to analyze the complexity, where n̄ denotes the dimension
of a vector template, ñ denotes the bit-length of a string
template, n denotes the size of a multi-string template, and
ζ is a constant.

An n̄-dimensional vector template is employed in RFE [10],
[14], e.g., FingerCode is a vector of integers with dimension
640. The RFE [10], [14] is efficient with single-round interac-
tion that is the same as UFinAKA, but the server needs to store
a string, which may be attacked. Similar to RFE [10], [14],
PassBio [31] based on Threshold Predicate Encryption (TPE)
has single-round interaction, whose performance bottleneck
lies in matrix multiplication and matrix inversion, which are
transformed to the number of multiplications. However, Pass-
Bio only achieves privacy-preserving fingerprint authentication
functionality, the number of rounds increases for PassBio to
negotiate a session key. We present PassBio in the comparison
because PassBio provides a representative fingerprint authenti-
cation approach without using RFE. Another type of template
is represented by an ñ-bit string in fPAKE [11] (including

two constructions named fPAKE-1 and fPAKE-2) and fuzzy
aPAKE [13](including two constructions named fuzzy aPAKE-
1 and fuzzy a PAKE-2), e.g., a 2048 bit IrisCode.

We note that fPAKE [11]-1 needs both frequent interactions
and heavy computation, fPAKE [11]-2 is more efficient than
fPAKE [11]-1 in terms of the number of rounds and computa-
tion complexity. However, both these two constructions need a
trusted server that is responsible for the security of fingerprint
templates. We also notice that both fuzzy aPAKE [13]-1 and
fuzzy aPAKE [13]-2 protect the biometric template from the
server, but they still need two interactions and heavy compu-
tation. In addition, they work only for the biometric template
in the form of the bit-string, e.g., the IrisCode. In contrast,
UFinAKA solves all the above issues and needs only single-
round interaction, approximately linear exponentiations (n is
the number of fingerprint strings, the experimental average n
is 95, m is generally set as 3). In addition, UFinAKA supports
anonymous authentication and updatable blind credentials.

B. Implementation

To measure the performance of UFinAKA, we implement
a prototype in Python using two laptops as the server and
the client, with the Intel (R) Core (TM) i5-8300H CPU
@ 2.30 GHz, 8 GB memory, and Intel (R) Core (TM) i7-
8500U @ 1.80GHz, 8 GB memory, respectively. The FBCA
is instantiated with Curve25519 and the hash functions with
SHA-256. We conduct experiments on four databases from
the Third International Fingerprint Verification Competition
(FVC2004) [35], fingerprint images are preprocessed with
the OpenCV library, and minutiae points are extracted as
coordinate values. For Encode, we experimentally choose
γ = 4 to present a fingerprint string using ten 4-bit values.

C. Experimental Results

1) Running Time: We investigate the UFinAKA computa-
tion performance with the running time of main consuming
algorithms. Measurements are given as the average over
100 tests on different databases (DB1, DB2, DB3, DB4 in
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TABLE III
RUNNING TIME (S) OF ALGORITHMS IN FBCA

FVC2004). Note DB1 and DB2 are natural human fingerprints,
while the distorted DB3 and synthetic DB4 involve many noisy
points. The results are presented in TABLE III.

In the registration phase, the client needs to perform
FBCA.Shard and FBCA.Hide algorithms. The results show
that both FBCA.Shard and FBCA.Hide are very efficient, costs
less than 0.2 seconds in all. In the AKA phase, the client
invokes FBCA.Shard and FBCA.Auth algorithms. We note
that the computation performance is roughly linear with the
number of minutiae points. The client costs less than 1 second,
even for low-quality fingerprint images in DB4, which is
acceptable in practice. FBCA.Auth is the most consuming
operation for the client, mainly because it involves lots of
exponentiation operations. Fortunately, the number of expo-
nentiations depends on n, only 40∼100 in general. In addition,
we can execute FBCA.Shard algorithm at the same time as
sending the Req to shorten the running time. The server
runs only FBCA.Token algorithm in the AKA phase, which
mainly involves a large number of lightweight operations, e.g.,
hash functions. The running time of FBCA.Shard is less than
0.04 seconds, even for the noisiest DB4. Therefore, UFinAKA
is efficient for both the client and the server.

2) Communication Time: We measured the communica-
tion performance in various network environments. For the
transcripts Reg , Req , and Res , we set six different net-
work bandwidths (1 Mbps to 300 Mbps) on the Local Area
Network (LAN) and the Internet, respectively. We find that
different databases in FVC2004 have little effect on the
communication performance, possibly because of the net-
work fluctuation, so we only show the representative results
on DB1. As shown in TABLE IV, Res costs the most
communication resources. The transmission time is about
465 milliseconds on 1 Mbps Internet, which is acceptable
for practical applications. Besides, the results show irregular
fluctuations occasionally, especially for the Req on the Inter-
net. We consider the main reason is the network instability,
and the transmitted items are not heavy enough to show
the regular results, which explains the practicability from
another side. In addition, UFinAKA needs only single-round
interaction in the AKA phase, which signally contributes to
its communication advancement.

3) Server Concurrent Experiment: We measure UFinAKA
for the server with multiple clients concurrently since the
service provider often serves multiple clients simultaneously.
Our instantiated FBCA.Token mainly involves VSS.ShareGen
and GBF.Build, we briefly test the running time of them.
In addition, the server may update its database regularly,
and store the blind credentials for multiple clients. We test

TABLE IV
COMMUNICATION TIME (ms) IN VARIOUS NETWORKS

Fig. 6. Running time and storage cost at server side.

the running time of VSS.ShareGen, GBF.Build, UpdateDB
and the storage cost to show the practical concurrent perfor-
mance of the server. As shown in Fig. 6, both the running
time and the storage cost roughly increase linearly with the
number of clients. In the case of one client, the running
time of VSS.ShareGen, GBF.Build, UpdateDB are all less
than 0.01 seconds, showing the practicability of UFinAKA.
Besides, in the update phase, once the credential database is
compromised, the server updates the database by invoking
UpdateDB independently. Since the client can synchronize
with the updated credential database by utilizing the auxiliary
items depicted in the update phase, the update operations bring
no additional overhead to the AKA protocol.

4) Comparisons: We compare the experiential performance
of UFinAKA with the state-of-the-art solutions to show the
practicability of UFinAKA. As concluded in Section VII-C.2,
the transcripts in UFinAKA are of small size, and the
experimental communication time is affected by the network
environment. However, the communication performance is
partly reflected by the server storage overhead. So we compare
the running time and server storage overhead with RFE [10],
[14], fuzzy aPAKE-1 and fuzzy aPAKE-2 [13]. To make the
comparison more convincing, we implement RFE as required
in [10] and [14], and instantiate fuzzy aPAKE-1 and fuzzy
aPAKE-2 as recommended in [13]. Both RFE and fuzzy
aPAKE [13] employ 5 FingerCodes as Res since FingerCodes
are rotation variant as recommended in [31]. Note that we set
the hamming error threshold is 2 in both [13] and [31] to show
the upper bounds of the performance. The comparison results
are shown in Fig 7. The running time of RFE, fuzzy aPAKE-
1, fuzzy aPAKE-2 is more than 4, 1300, 1400 times cost of
UFinAKA, respectively. The storage overhead of RFE, fuzzy
aPAKE-1, fuzzy aPAKE-2 is more than 400, 100, 8×105 times
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Fig. 7. Comparison of running time (ms) and storage (KB).

Fig. 8. Comparison of server running time.

cost of UFinAKA, respectively. Therefore, UFinAKA has
significant advantage over RFE and fuzzy aPAKE in terms
of both computation and server storage.

In addition, since the server needs to interact with multiple
clients concurrently, UFinAKA employs the garbled Bloom
filter instead of polynomial interpolation in BAKE. The com-
parison results are shown in Fig 8. The running time of
BAKE is about 7 times cost of UFinAKA in four databases.
Therefore, UFinAKA shows better performance than BAKE
in the Client/Server mode.

VIII. RELATED WORK

Depending on the underlying techniques, we divide AKAs
into two categories (Fig. 9): Key-based and Human-based.

Key-based AKAs are widely utilized in real-world appli-
cations, storing a secret key within the terminal and verifying
the identity by checking the key. The most common key-based
AKA is typically built on a powerful PKI, where a Certificate
Authority issues an identity certificate and a secret key for each
party. A simple example of PKI-based AKAs is the Transport
Layer Security (TLS) handshake [36], which depends on a
trusted certificate authority to sign the document associating
the public key. Besides, the PKI is well known as resource-
consuming, which is not suitable for some limited environ-
ments. Another representative key-based AKA is designed
based on a shared symmetric key. Avoine et al. proposed
SAKE [37], a lightweight AKA protocol solely based on
Symmetric Key (SK), utilizing a resynchronization technique,
and Boydet al. [38] improved SAKE with synchronization
robustness. These solutions are employed in resource-limited
cases, e.g., the Industrial Internet of Things [39], but require
the two participants to share a secret only accessed by

Fig. 9. Categories of AKAs.

themselves in advance, which is not convenient in practice.
Furthermore, these key-based AKAs verify the possession of
the key rather than the participant, and need an additional
cryptographic device to store a high-entropy secret key.

Human-based AKAs generally verify the user identity
based on personal authentication factors that are not stored
within the terminal. The most common human-based AKA
is the password-based AKA [4], [40], [41], [42], [43], [44],
[45], which converts a low-entropy secret password into a
random-looking session key. The Symmetric Password-based
AKA (SPAKA) (e.g., SPAKE2 [41], Dragonfly [44]) considers
two participants that share the same password to generate
a shared session key, but sharing the password means an
underlying risk that the server discloses passwords. Thus, the
Asymmetric PAKA (APAKA) [42], [43], [45] was proposed to
resist the server compromise. Jarecki et al. [42] proposed a
Universal Composable (UC) strong APAKA, named QPAQUE,
to prevent pre-computation attacks. Bradley et al. [43] gave
further efficiency improvements and weaker security assump-
tions compared with QPAQUE. However, the password-based
approaches have trouble with weak passwords and password
forgetting.

Biometric AKAs [3], [10], [12], [13], [14], [46] provide
more user-friendly AKA functionality via utilizing unique
biometric features, e.g., the human fingerprint. The repre-
sentative biometric AKA schemes [10], [12], [14], [46] are
generally constructed based on the Fuzzy Extractor (FE) [47],
which directly generates a secret key from the repeated noisy
biometrics. The research on FE-based AKAs is classified
into the Single-Factor (SF) solution (e.g., the RFE [10] that
utilizes biometrics to provide authentication) and the Multi-
Factor (MF) solution (e.g., MFAKA [12] and GAKA [48]
that combine biometrics with other factors to provide authen-
tication). FEs have strong transportability, but require the
server to store a secret, which may be exploited by an
adversary. Recently, the Secure Computation (SC) provides
more appropriate candidates for biometric AKAs [3], [11],
[13], [15]. However, the fuzzy Password Authenticated Key
Exchange (fPAKE) [11] exposed the template to the server, the
fuzzy aPAKE [13] consumed heavy computation overhead and
frequent interactions, and the BAKE [3] and FAKE [15] is not
designed for the Client/Server model. In contrast, UFinAKA
solves all the above issues for the first time by designing
an efficient FBCA scheme with computationally lightweight
GBF and VSS. The server can self-recover from corruption
by updating credentials. In addition, although UFinAKA is
designed specifically for the human fingerprint, we reasonably

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 14,2023 at 07:05:52 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: UFinAKA: FINGERPRINT-BASED AKA WITH UPDATABLE BLIND CREDENTIALS 13

believe that this approach may be feasible for other biometric
characteristics (e.g., the iris and face) which could be con-
verted into multiple strings or minutiae points.

IX. CONCLUSION

To establish secure network communications in online ser-
vices, we presented a privacy-preserving updatable fingerprint-
based blind credentials authentication and key agreement sys-
tem, UFinAKA, which supports updatable fingerprint-based
blind credentials and anonymous authentication. Specially,
we proposed an FBCA primitive as the building block to
preserve fingerprint privacy for UFinAKA. We also designed a
fingerprint-based AKA protocol with updatable blind creden-
tials based on an efficient FBCA construction, involving linear
computation complexity and single-round interaction. The
security proof showed that UFinAKA is secure in the practical
environment. The experimental evaluation results showed that
the running time of UFinAKA is less than 1 second and the
storage cost is less than 1 MB, which is appropriate in practice.
The server’s running time and storage cost are small and
roughly increases linearly with the number of clients, which
is suitable for the Client/Server mode in reality.

REFERENCES

[1] D. Felsch, M. Grothe, J. Schwenk, A. Czubak, and M. Szymanek,
“The dangers of key reuse: Practical attacks on IPsec IKE,” in Proc.
27th USENIX Secur. Symp. Berkeley, CA, USA: USENIX Association,
Aug. 2018, pp. 1–18.

[2] R. Borgaonkar, L. Hirschi, S. Park, and A. Shaik, “New privacy threat
on 3G, 4G, and upcoming 5G AKA protocols,” Proc. Privacy Enhancing
Technol., vol. 2019, no. 3, pp. 108–127, Jul. 2019.

[3] M. Wang, K. He, J. Chen, Z. Li, W. Zhao, and R. Du, “Biometrics-
authenticated key exchange for secure messaging,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2021, pp. 2618–2631.

[4] S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-
based protocols secure against dictionary attacks,” in Proc. IEEE
Comput. Soc. Symp. Res. Secur. Privacy, May 1992, pp. 72–84.

[5] D. Pointcheval, “Password-based authenticated key exchange,” in Proc.
Int. Workshop Public Key Cryptogr. Berlin, Germany: Springer, 2012,
pp. 390–397, doi: 10.1007/978-3-642-30057-8_23.

[6] M. Abdalla, F. Benhamouda, and P. MacKenzie, “Security of the J-PAKE
password-authenticated key exchange protocol,” in Proc. IEEE Symp.
Secur. Privacy, May 2015, pp. 571–587.

[7] M. Abdalla, T. Eisenhofer, E. Kiltz, S. Kunzweiler, and D. Riepel,
“Password-authenticated key exchange from group actions,” in Proc.
Annu. Int. Cryptol. Conf. (CRYPTO). Cham, Switzerland: Springer,
2022, pp. 699–728.

[8] F. Hao and P. C. van Oorschot, “SoK: Password-authenticated key
exchange—Theory, practice, standardization and real-world lessons,” in
Proc. ACM Asia Conf. Comput. Commun. Secur., May 2022, pp. 1–15.

[9] D. Pointcheval and S. Zimmer, “Multi-factor authenticated key
exchange,” in Proc. Int. Conf. Appl. Cryptogr. Netw. Secur. Berlin,
Germany: Springer, 2008, pp. 277–295.

[10] R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. Smith, “Reusable
fuzzy extractors for low-entropy distributions,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptograph. Techn. Berlin, Germany: Springer, Apr. 2016,
pp. 117–146.

[11] P. Dupont, J. Hesse, D. Pointcheval, L. Reyzin, and S. Yakoubov, “Fuzzy
password-authenticated key exchange,” in Proc. Annu. Int. Conf. Theory
Appl. Cryptograph. Techn. Heidelberg, Germany: Springer, Mar. 2018,
pp. 393–424.

[12] R. Zhang, Y. Xiao, S. Sun, and H. Ma, “Efficient multi-factor authenti-
cated key exchange scheme for mobile communications,” IEEE Trans.
Dependable Secure Comput., vol. 16, no. 4, pp. 625–634, Jul. 2019.

[13] A. Erwig, J. Hesse, M. Orlt, and S. Riahi, “Fuzzy asymmetric password-
authenticated key exchange,” in Proc. Int. Conf. Theory Appl. Cryptol.
Inf. Secur. Cham, Switzerland: Springer, Dec. 2020, pp. 761–784.

[14] R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. Smith, “Reusable
fuzzy extractors for low-entropy distributions,” J. Cryptol., vol. 34, no. 1,
p. 2, Jan. 2021.

[15] M. Jiang, S. Liu, S. Han, and D. Gu, “Fuzzy authenticated key exchange
with tight security,” in Proc. Eur. Symp. Res. Comput. Secur. Cham,
Switzerland: Springer, Sep. 2022, pp. 337–360.

[16] General Data Protection Regulation. Accessed: Sep. 6, 2023. [Online].
Available: https://gdpr-info.eu/

[17] A. K. Jindal, I. Shaik, V. Vasudha, S. R. Chalamala, R. Ma, and
S. Lodha, “Secure and privacy preserving method for biometric template
protection using fully homomorphic encryption,” in Proc. IEEE 19th Int.
Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom), Dec. 2020,
pp. 1127–1134.

[18] Y. Lai, Z. Jin, K. Wong, and M. Tistarelli, “Efficient known-sample
attack for distance-preserving hashing biometric template protection
schemes,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 3170–3185,
2021.

[19] V. K. Hahn and S. Marcel, “Biometric template protection for neural-
network-based face recognition systems: A survey of methods and
evaluation techniques,” IEEE Trans. Inf. Forensics Security, vol. 18,
pp. 639–666, 2023.

[20] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 3rd ed.
Boca Raton, FL, USA: CRC Press, 2021.

[21] A. M. Johnston and P. S. Gemmell, “Authenticated key exchange prov-
ably secure against the man-in-the-middle attack,” J. Cryptol., vol. 15,
no. 2, pp. 139–148, Jan. 2002.

[22] Z. Ma and J. He, “Outsider key compromise impersonation attack on
a multi-factor authenticated key exchange protocol,” in Proc. Int. Conf.
Appl. Cryptogr. Netw. Secur. Heidelberg, Germany: Springer, Sep. 2022,
pp. 320–327.

[23] A. C.-C. Yao, “How to generate and exchange secrets,” in Proc.
27th Annu. Symp. Found. Comput. Sci. Washington, DC, USA: IEEE
Computer Society, Oct. 1986, pp. 162–167.

[24] Y. Huang, L. Malka, D. Evans, and J. Katz, “Efficient privacy-preserving
biometric identification,” in Proc. 17th Conf. Netw. Distrib. Syst. Secur.
Symp., 2011, pp. 90–98.

[25] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
45th Annu. ACM Symp. Theory Comput., May 2009, pp. 169–178.

[26] G. Pradel and C. Mitchell, “Privacy-preserving biometric matching using
homomorphic encryption,” in Proc. IEEE 20th Int. Conf. Trust, Secur.
Privacy Comput. Commun. (TrustCom), Oct. 2021, pp. 494–505.

[27] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[28] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big
data: An efficient and scalable protocol,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS), Nov. 2013, pp. 789–800.

[29] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[30] J. Hartloff, J. Dobler, S. Tulyakov, A. Rudra, and V. Govindaraju,
“Towards fingerprints as strings: Secure indexing for fingerprint match-
ing,” in Proc. Int. Conf. Biometrics (ICB), Jun. 2013, pp. 1–6.

[31] K. Zhou and J. Ren, “PassBio: Privacy-preserving user-centric biometric
authentication,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 12,
pp. 3050–3063, Dec. 2018.

[32] M. Barni et al., “Privacy-preserving fingercode authentication,” in Proc.
12th ACM workshop Multimedia Secur., Sep. 2010, pp. 231–240.

[33] M. Bellare, R. Canetti, and H. Krawczyk, “A modular approach to
the design and analysis of authentication and key exchange protocols,”
in Proc. 30th Annu. ACM Symp. Theory Comput. (STOC), May 1998,
pp. 419–428.

[34] Y. Lindell, “How to simulate it—A tutorial on the simulation proof
technique,” in Tutorials on the Foundations of Cryptography. Cham,
Switzerland: Springer, 2017, pp. 277–346.

[35] Fvc2004. Accessed: Sep. 6, 2023. [Online]. Available: http://
bias.csr.unibo.it/fvc2004/

[36] D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, “Post-quantum
authentication in TLS 1.3: A performance study,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2020, pp. 1–16.

[37] G. Avoine, S. Canard, and L. Ferreira, “Symmetric-key authenticated
key exchange (SAKE) with perfect forward secrecy,” in Proc. Cryptog-
raphers’ Track RSA Conf. Heidelberg, Germany: Springer, Feb. 2020,
pp. 199–224.

[38] C. Boyd, G. T. Davies, B. de Kock, K. Gellert, T. Jager, and
L. Millerjord, “Symmetric key exchange with full forward security and
robust synchronization,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf.
Secur. Cham, Switzerland: Springer, Dec. 2021, pp. 681–710.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 14,2023 at 07:05:52 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1007/978-3-642-30057-8_23


14 IEEE/ACM TRANSACTIONS ON NETWORKING

[39] Q. Fan, J. Chen, M. Shojafar, S. Kumari, and D. He, “SAKE: A sym-
metric authenticated key exchange protocol with perfect forward secrecy
for industrial Internet of Things,” IEEE Trans. Ind. Informat., vol. 18,
no. 9, pp. 6424–6434, Sep. 2022.

[40] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie, “Universally
composable password-based key exchange,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptograph. Techn. Heidelberg, Germany: Springer, 2005,
pp. 404–421.

[41] J. Becerra, D. Ostrev, and M. Škrobot, “Forward secrecy of SPAKE2,”
in Proc. Int. Conf. Provable Secur. Jeju-do, South Korea: Springer,
Oct. 2018, pp. 366–384.

[42] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE: An asymmetric PAKE
protocol secure against pre-computation attacks,” in Proc. Annu. Int.
Conf. Theory Appl. Cryptograph. Techn. Heidelberg, Germany: Springer,
2018, pp. 456–486.

[43] T. Bradley, S. Jarecki, and J. Xu, “Strong asymmetric PAKE based on
trapdoor CKEM,” in Proc. CRYPTO. Heidelberg, Germany: Springer,
Aug. 2019, pp. 798–825.

[44] M. Vanhoef and E. Ronen, “Dragonblood: Analyzing the dragonfly
handshake of WPA3 and EAP-pwd,” in Proc. IEEE Symp. Secur. Privacy
(SP), May 2020, pp. 517–533.

[45] M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu, “Uni-
versally composable relaxed password authenticated key exchange,” in
Proc. Annu. Int. Cryptol. Conf. Cham, Switzerland: Springer, Aug. 2020,
pp. 278–307.

[46] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith, “Secure
remote authentication using biometric data,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptograph. Techn. Heidelberg, Germany: Springer, 2005,
pp. 147–163.

[47] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” in Proc. Int. Conf.
Theory Appl. Cryptograph. Techn. Heidelberg, Germany: Springer, 2004,
pp. 523–540.

[48] Z. Li, M. Wang, V. Sharma, and P. Gope, “Sustainable and round-
optimized group authenticated key exchange in vehicle communication,”
IEEE Trans. Intell. Transp. Syst., early access, Dec. 28, 2022, doi:
10.1109/TITS.2022.3169182.

Mei Wang received the M.S. degree in cryptogra-
phy from Xidian University, Xi’an, China, in 2016,
and the Ph.D. degree in cyberspace security from
Wuhan University, Wuhan, China, in 2022. She is
currently an Assistant Researcher with the School
of Cyber Science and Technology, Shandong Uni-
versity. She has published research papers in inter-
national journals and conferences, such as the IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTA-
TION SYSTEMS, the Future Generation Computer
Systems, and ACM CCS. Her research interests

include applied cryptography, cloud computing, mobile computing, and pri-
vacy protection.

Jing Chen (Senior Member, IEEE) received
the Ph.D. degree in computer science from the
Huazhong University of Science and Technology,
Wuhan. He is currently a Professor with the Key
Laboratory of Aerospace Information Security and
Trusted Computing, Ministry of Education, School
of Cyber Science and Engineering, Wuhan Univer-
sity, Wuhan. He has published over 90 research
articles in many international journals and con-
ferences, such as the IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, the
IEEE TRANSACTIONS ON MOBILE COMPUTING, the USENIX Security,
ACM CCS, and INFOCOM. His research interests are in the areas of network
security and cloud security.

Kun He (Associate Member, IEEE) received the
Ph.D. degree in computer science from Wuhan Uni-
versity, Wuhan. He has published research articles
in the IEEE TRANSACTIONS ON INFORMATION
FORENSICS AND SECURITY, the IEEE TRANS-
ACTIONS ON DEPENDABLE AND SECURE COM-
PUTING, the IEEE TRANSACTIONS ON MOBILE
COMPUTING, the USENIX Security, ACM CCS, and
INFOCOM. His research interests include cryptogra-
phy, network security, mobile computing, and cloud
computing.

Ruozhou Yu (Senior Member, IEEE) received the
Ph.D. degree in computer science from Arizona
State University, Tempe, AZ, USA, in 2019. He is
currently an Assistant Professor of computer science
with North Carolina State University. His research
interests include the Internet of Things, cloud/edge
computing, smart networking, algorithms and opti-
mization, security and privacy, and blockchain.

Ruiying Du received the B.S., M.S., and Ph.D.
degrees in computer science from Wuhan University,
Wuhan, China, in 1987, 1994, and 2008, respec-
tively. She is currently a Professor with the School of
Cyber Science and Engineering, Wuhan University.
She has published over 80 research articles in many
international journals and conferences, such as the
IEEE TRANSACTIONS ON INFORMATION FOREN-
SICS AND SECURITY, the USENIX Security, ACM
CCS, INFOCOM, SECON, and TrustCom. Her
research interests include network security, wireless

networks, and mobile computing.

Zhihao Qian is currently pursuing the bachelor’s
degree with the School of Cyber Science and Engi-
neering, Wuhan University. He is excellent in com-
puter programming. His research interests include
network security and system security.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on December 14,2023 at 07:05:52 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TITS.2022.3169182

