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Identity-Based Cloud Storage Auditing for
Data Sharing With Access Control of

Sensitive Information
Yang Yang , Yanjiao Chen , Senior Member, IEEE, Fei Chen , and Jing Chen , Member, IEEE

Abstract—Remote data integrity auditing ensures the integrity
of cloud storage. In practice, cloud users may not want their
sensitive data to be exposed to others. Thus, it is meaningful to
investigate how to realize data sharing with sensitive information
hiding in cloud storage auditing. Up to now, cloud storage has
been proven to achieve the sensitive information hiding property
through a third-party sanitizer dedicated to sanitize user data,
which leads to high outlays on purchasing and maintaining a
special server. To meet this challenge, we design a novel cloud
storage auditing protocol to support sensitive information hid-
ing without the need of a third-party sanitizer. In addition, our
scheme allows data owners to enable or disable other users to
access their sensitive information with the help of the cloud that
dose not deviate from the agreement during access control. To
be specific, only after receiving the delegations from the data
owner, the users can compute the valid warrants that can pass
the access verification of the cloud. The proposed protocol is built
on identity-based cryptography, thus avoiding the complex cer-
tificate management. We validate the advantages of the proposed
protocol through massive theoretical analysis and experimental
results.

Index Terms—Access control, cloud storage auditing, data
integrity, sensitive information hiding.

I. INTRODUCTION

W ITH the development of cloud storage, resource-limited
data owners tend to store their abundant data on the
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cloud [1]. Unfortunately, user data on the cloud might be
damaged because of internal mistakes and external attacks.
For profit and reputation, the cloud might try its best to cover
the accidents of data abnormality. Thus, data owners have to
launch data integrity auditing against cloud storage from time
to time. To this end, many cloud storage auditing protocols
were proposed.

For data integrity auditing, cloud users store both data and
its authenticators on the cloud, where the authenticators are
utilized to prove the integrity of cloud storage. In practice,
the outsourced data usually contains users’ privacy. For exam-
ple, electronic health records (EHRs) might involve patients’
names and telephone numbers. If these EHRs are transferred
to a disease research institute, the sensitive information of
patients will be learned by the researchers. Thereafter, it
is meaningful to implement cloud storage auditing for data
sharing with sensitive information hiding.

At the first glance, it seems that we can easily achieve this
goal through encrypting the entire data, computing the authen-
ticators of the encrypted blocks, and outsourcing the encrypted
blocks and their authenticators to the cloud. In this way, data
owners can check the integrity of cloud storage. Although this
method can achieve the property of sensitive information hid-
ing in cloud storage, it will result in the failure of data sharing,
i.e., other users cannot access the encrypted data. To address
this problem, a possible solution is to distribute the decryp-
tion key to other users, which however makes the sensitive
information no longer private. Thus, it is infeasible to realize
the property of sensitive information hiding in cloud storage
by encrypting the entire user data.

To meet this challenge, a decent solution for cloud stor-
age auditing with sensitive information hiding was proposed
in [2], in which a special server is introduced to sanitize sensi-
tive blocks into uniform messy codes (e.g., multiple asterisks,
question marks and so on) and transform their authenticators
into valid ones. Nevertheless, this solution relies heavily on
a third-party sanitizer, which will result in a large amount
of outlays on purchasing and maintaining a special server.
Besides, sanitizing data on a third-party server will incur addi-
tional overheads and security challenge due to the following
reasons. The sanitizer needs to record the sanitizing values
of the sensitive blocks for each user, and cloud users can-
not directly interact with the cloud, but have to transmit and
receive data via the sanitizer. Furthermore, the sanitizer might
also lose data due to the same reasons as the cloud, making
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sensitive information irrecoverable. Thereafter, it is necessary
to achieve the sensitive information hiding property in cloud
storage auditing protocols without the help of a third-party
sanitizer.

In practice, data owners might need some other users to
access their sensitive information within a certain period of
time. This brings a new challenge in the design of cloud
storage auditing for data sharing with sensitive information
hiding. For example, a patient Alice is usually required to
share her sensitive medical records with the doctor during an
appointment, which is called access authorization. If Alice is
referred to another doctor for some reason, she might not want
the previous doctor to learn her sensitive medical records any
more. This means that Alice should be able to revoke access
authorization of her original doctor. Therefore, it is desirable
that data owners can enable and disable other users to access
their sensitive information in cloud storage auditing. However,
this challenge is unexplored in previous works.

A. Contribution

To meet the above challenges, we investigate identity-based
(ID-based) cloud storage auditing protocol for data sharing
with sensitive information hiding. Compared with existing
proposals, our contributions are as follows.

1) We realize the sensitive information hiding property in
cloud storage without the help of a third-party sanitizer,
while keeping the remote data integrity auditing func-
tion still in effect. The key is that the cloud decides
whether to provide the actual data or the uniform messy
codes for the sensitive blocks based on the authorization
of users. Thanks to no involvement of third-party sani-
tizers, our solution has the following advantages. First,
the substantial outlays of purchasing and maintaining a
special server for sanitizing user data can be completely
avoided. Second, the storage cost can be hugely reduced
because no sanitizing values of sensitive blocks need to
be stored. Third, the communication cost can be reduced
by about a half since data owners can directly interact
with the cloud without the relay of the sanitizer.

2) We explore how to allow data owners to enable and
disable other users to access their sensitive information
in cloud storage auditing. We present a novel concept,
called ID-based cloud storage auditing, for data shar-
ing with the access control of sensitive information.
In our solution, users’ sensitive information is shared
with others in a controllable way, which is implemented
by distributing well-designed delegations to authorized
users. To the best of our knowledge, our protocol is the
first solution with such functionalities.

3) We give a detailed proof about the correctness and the
security of the proposed protocol. We also evaluate the
performance of the proposed protocol through theoret-
ical analysis and experimental results. Compared with
the state-of-the-art method [2], the proposed protocol
has improved storage and communication and com-
putational costs. In addition to cloud storage auditing
with sensitive information hiding, the proposed protocol

can also efficiently support access control of sensitive
information.

B. Related Work

To check the integrity of cloud storage, a large number
of remote auditing protocols were proposed. To relieve the
computation burden, users usually outsource their auditing to
the third-party auditor (TPA). Ateniese et al. [3] first consid-
ered cloud storage auditing in a well-designed provable data
possession (PDP) model, which enables that the verifiers can
handle integrity verification without possessing actual data.
Juels and Kaliski, Jr. [4] utilized spot checking and error cor-
recting codes to achieve cloud storage auditing. Shacham and
Waters [5] utilized pseudo-random function and BLS signature
to realize cloud storage auditing.

To dynamically update user data, Ateniese et al. [6] initially
designed a PDP protocol with partial data dynamics, which
however only supports a few number of data updates. To sup-
port full data dynamics, the following protocols resorted to
index arrays [7]–[10], linked lists [11]–[13], or data authenti-
cators without indices [14]. To eliminate the damage caused
by the exposure of user key, Yu et al. [15]–[17] designed a
PDP protocols with key-exposure resistance by dynamically
updating users’ keys. To further improve the performance,
Chen et al. [10] constructed a PDP protocol by using the dis-
tributed string equality checking technique. Zhang et al. [19]
proposed a PDP protocol by using the discrete logarithm (DL)
problem. These two protocols contain only basic algebraic
operations, in which the most complicated operation is just
exponential computation.

The above protocols [3]–[19] all depend on public key
infrastructure and, thus, introduce complicated certificate man-
agement to ensure the genuineness of their public keys. To
address this challenge, Wang et al. [20] designed an ID-based
PDP protocol based on an ID-based cryptography. In such a
scheme, cloud users take their identities (e.g., names and tele-
phone numbers) as the public keys and, thus, do not resort to
PKI any more. Following this seminal work, many ID-based
cloud storage auditing protocols were proposed in order to
fit more application scenarios. Wang et al. [21] designed an
ID-based protocol, which supports proxy-oriented data out-
sourcing. Yu et al. [22] constructed an ID-based protocol
based on asymmetric group key agreement, which achieves
zero-knowledge preservation of user privacy. Wang et al. [23]
designed an ID-based protocol to support unconditionally
anonymous integrity auditing, which protects the privacy of
user identity and provides an incentive for cloud user to reveal
dishonest incidents. Li et al. [24] and Zhou et al. [25] con-
structed an ID-based protocol, which enables certificateless
public auditing against escrow attacks. Li et al. [26] presented
a fuzzy ID-based protocol, which further simplifies key man-
agement. Huang et al. [27] came up with an ID-based protocol,
which supports incentive cloud storage auditing for nonman-
ager groups. Shen et al. [2] presented an ID-based protocol
with sensitive information hiding, which achieves perfect user
privacy through sanitizing the sensitive information in cloud
storage.
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Fig. 1. System model.

Data sharing among a group of users is a widely used
service in cloud storage. In practice, it is common that a cloud
user joins and leaves a group. For example, Alice joins a group
due to job demand, and when she is retired, she is required
to be revoked from this group. Thus, how to manage user
authorization is very important in cloud storage auditing. To
enable data owners to control whether other users can per-
form the data integrity auditing against their cloud storage,
Wang et al. [28] constructed an ID-based protocol with the
control of data integrity auditing, which is built on the proxy
resignature technique. Yuan and Yu [29] came up with an ID-
based protocol with the control of data integrity auditing by
using polynomial-based generation and proxy-based update of
data authenticators. Zhang et al. [31] explored an ID-based
protocol with the control of data integrity auditing, which is
based on a new strategy for the generation and the update of
user keys. Different from the above protocols with the control
of data integrity auditing, this article explores how to design an
ID-based protocol for data sharing with the control of sensitive
information access.

C. Organization

The reminder of this article is organized as follows.
Section II describes the preliminaries. Section III illustrates
the proposed protocol. Section IV shows the theoretical anal-
ysis. Section V focuses on the performance evaluation. The
conclusion of this article is provided in Section VI.

II. PRELIMINARIES

This section first introduces the system and security models
with respect to the ID-based cloud storage auditing, and then
reviews cryptographic tools adopted in this article.

A. System Model

As depicted in Fig. 1, the system model contains four enti-
ties: 1) the cloud; 2) the users; 3) the TPA; and 4) the key
generation center (KGC).

Cloud: The cloud is a powerful entity, which provides
abundant storage resources to users. The cloud also controls

user access through checking the validity of the received
warrant.

Users: Users subscribe to the data sharing service provided
by the cloud. Users may or may not intend to share their
data with others. Those who provide data are called data
owners. The data owner stores abundant data on the cloud.
Through cloud storage, the data owner shares his/her data with
other users under the condition that the sensitive information
is available in a controllable way.

KGC: The KGC is a trustworthy entity that generates system
public parameters and users’ secrete keys.

TPA: The TPA is an impartial entity that checks the integrity
of cloud storage.

In our system, the KGC distributes users’ secret keys
according to their identities. After receiving the secret key,
the data owner first generates the authenticators of the data
blocks in the file, and then stores them together on the cloud,
where the authenticators are utilized to prove the integrity of
cloud storage. For data auditing, the TPA transmits an audit-
ing sequence to the cloud for requesting the integrity proof,
and then checks the integrity of cloud storage by validating
the received proof. In addition, a data owner can enable or
disable other members of the same group to access his/her
sensitive information with the help of the cloud. To be spe-
cific, the user sends a warrant to the cloud for data access,
which is generated based on the delegation from the data
owner. If this warrant is verified, the cloud returns actual data
blocks; otherwise, the cloud feeds back actual data blocks
for insensitive blocks and uniform messy codes for sensitive
blocks. In this article, the cloud is assumed to not deviate
from the agreement during access control since it is often pro-
vided by credible organizations, such as Google, Amazon, and
so on.

There are two main threats to the security of the outsourced
user data. First, the cloud may try its best to cover abnormal
incidents of data loss for its own interests. Second, the TPA
and users may elicit other users’ sensitive information. Thus,
our ID-based cloud storage auditing protocol has the following
design goals.

1) Correctness: If the KGC, the cloud, the TPA and the
group users honestly follow the protocol, they can
always pass the correctness checking in the protocol.

2) Auditing Soundness: The cloud cannot successfully
cheat the TPA with incorrect user data.

3) Detectablity: The TPA can detect the incidents of data
loss with a nonnegligible probability.

4) Sensitive Information Hiding: The sensitive information
of the data owner is prevented from the TPA and other
users.

We formalize the compact framework of an ID-based cloud
storage auditing protocol for data sharing with the access
control of sensitive information as follows.

Definition 1: As shown in Fig. 2, an ID-based cloud storage
auditing protocol for data sharing with the access control of
sensitive information contains eight algorithms.

1) Setup: run by the KGC. Given a security parameter,
the KGC produces the master secret key MSK and the
system public key PK.
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Fig. 2. Framework of an ID-based cloud storage auditing protocol for data sharing with the access control of sensitive information.

2) Extract: run by the KGC and the users. Given a user’s
identity ID, the KGC computes this user’s secret key
SKID. The user accepts the distributed secret key if it is
verified; otherwise, just refuses it.

3) AuthGen: run by the data owner. Given a data file F, the
data owner generates its tag τ , a set of its authenticators
T , and a set of the indices of its sensitive blocks K.

4) ProofGen: run by the cloud. Given the data file, the
authenticators and the auditing sequence, the cloud
produces an integrity proof.

5) Verify: run by the TPA. Given an integrity proof, the
TPA outputs q = 1 if the proof is verified; otherwise,
the TPA outputs q = 0.

6) Authorize: run by the data owner and users. For access
authorization, the data owner issues a delegation D to
each user who are allowed access to the data.

7) Revoke: run by the data owner, the nonrevoked users and
the cloud. For access revocation, the data owner updates
the delegations of all nonrevoked users.

8) Access: run by the authorized users and the cloud. With
input of the delegation, the authorized user first gener-
ates a warrant for data access and transmits it to the
cloud. If the warrant is verified, the cloud returns actual
data blocks in F; otherwise, the cloud feeds back actual
data blocks for insensitive blocks and uniform messy
codes for sensitive blocks, denoted as UF .

B. Security Model

Our security model is built on a security game, in which
the data owner or the TPA is the challenger and the malicious
cloud is the adversary.

1) Setup: The challenger produces the master secret key
and the public key using the Setup algorithm. The
challenger returns the public key to the adversary.

2) Query: The adversary can launch the following queries
to the challenger.

a) Querying Hash Value: The adversary can inquire
any type of hash value for an arbitrary input. The
challenger computes the hash value according to
the inputs of the adversary, which is then fed back.

b) Querying File Tag: The adversary can request the
tag of an arbitrary file. The challenger generates

the tag of the input file through executing part of
AuthGen, and then replies it to the adversary.

c) Querying User Secret Keys: The adversary can ask
for the secret key for an arbitrary identity. The
challenger first produces a user secret key through
Extract, and then returns it to the adversary.

d) Querying Data Authenticators: The adversary can
query the authenticator of an arbitrary data block,
no matter whether it is sensitive or not. The
challenger first computes user secret key accord-
ing to Extract, then generates the authentica-
tors of the input data blocks using AuthGen,
and finally transmits these authenticators to the
adversary.

e) Querying Integrity Proof: The adversary can query
the integrity proof of arbitrary data blocks. The
challenger produces the integrity proof of the input
data blocks by executing Extract, AuthGen and
ProofGen in turn, which is then returned to the
adversary.

3) Challenge: The challenger launches an auditing
sequence to the adversary for requesting the integrity
proof.

4) Forgery: The adversary forges an integrity proof as
the challenge feedback to the challenger. If this proof
is always accepted by the challenger, the adversary is
regarded as the winner of this security game.

From the above game, we have the following security
definition.

Definition 2 (Auditing Soundness): An ID-based cloud stor-
age auditing protocol is considered to be secure if there is a
knowledge extractor which can extract all the audited data
when the adversary succeeds in the above security game with
the challenger.

Next, we formalize the detectability of an ID-based cloud
storage auditing protocol according to the probability of
detecting damaged data blocks.

Definition 3 (Detectability): An ID-based cloud storage
auditing protocol is detectable if the probability of the dam-
aged data blocks being detected is non-negligible when the
number of audited blocks is sufficiently large.

Finally, we present a formal definition to capture the security
requirement of sensitive information hiding.
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TABLE I
NOTATIONS

Definition 4 (Sensitive Information Hiding): An ID-based
cloud storage auditing protocol guarantees sensitive
information hiding if only the data owners and the permitted
users can learn the sensitive information from cloud storage.

C. Mathematical Background

Bilinear Map: Assume that there are two cyclic
multiplicative groups G1 and G2, where G1 = <g> and their
orders are both a prime p. In addition, e : G1 × G1 → G2 is
a bilinear map, satisfying the following.

1) Bilinearity: ∀α, β ∈ G1 and ∀x, y ∈ Z∗
p , we have

e(αx, βy) = e(α, β)xy.
2) Computability: e can be computed within a reasonable

time.
3) Nondegeneracy: e(g, g) �= 1 is always true.
Computational Diffie–Hellman (CDH) Problem: Given

g, gx, gy ∈ G1 (but not x, y ∈ Z∗
p ), the problem is to solve

gxy. The probability of addressing this problem is negligible.
Discrete Logarithm Problem: Given g, gx ∈ G1, the problem

is to solve x. The probability of solving this problem is
negligible.

Finally, we show the main notations throughout this article
in Table I.

III. PROPOSED PROTOCOL

A. Overview

According to the state-of-the-art approach [2], in order to
sanitize sensitive information into uniform messy codes, it
is required to transmit user data to a third-party sanitizer
before storing the data on the cloud. This results in out-
lays in purchasing and maintaining the hardware/software of
the sanitizer, and large overheads. To save costs, our solu-
tion enables the cloud, instead of the sanitizer, to sanitize
users’ sensitive blocks into uniform messy codes. In addi-
tion, we also consider how to enable or disable a user to
access the sensitive data of a specific data owner. To meet

the above challenges, we propose a novel ID-based cloud
storage protocol for data sharing with the access control of
sensitive information, in which the data owners directly trans-
mit their data to the cloud without the relay of a third-party
sanitizer. When an unauthorized user requests a data file that
contains sensitive information, the cloud feeds back actual data
blocks for insensitive blocks and uniform messy codes for
sensitive blocks. Moreover, the proposed protocol is designed
using ID-based cryptography, which avoids complex certificate
management.

In our design, the KGC distributes cloud users’ secret keys
according to their identities. After receiving the secret key, the
cloud user sets out to verify its correctness. Before outsourcing
a file to the cloud, the data owner has to compute an authenti-
cator for each data block in the file. These authenticators are
utilized to prove the integrity of cloud storage. In addition,
the data owner also generates a tag to ensure the correctness
of public parameters related to the outsourced file, which is
transmitted to the cloud along with the data blocks and their
authenticators. In each data auditing, the TPA first transmits
a challenge sequence to the cloud for requesting an integrity
proof, and then checks the integrity of cloud storage by judging
whether the received proof is valid or not. By using the dele-
gations of access authorization, a data owner is able to enable
or disable other users to access its sensitive information. For
data access, the authorized user first generates a warrant based
on the received delegation, and then transmits it to the cloud.
If the cloud accepts this warrant, the cloud returns the actual
blocks; otherwise, the cloud feeds back the actual blocks for
insensitive blocks and the uniform messy codes for sensitive
blocks.

B. Detailed Design

Assume that a data owner with the identity ID, denoted as
UID, possesses a large file F to store. The unique identifier of F
is denoted as name. F can be divided into F = (d1, d2, . . . , dn)

according to its size. We utilize a digital signature SSig to
ensure the correctness of verification parameters related to F,
in which the signing public and secret keys are denoted as spk
and ssk, respectively.

Next, we show the details of the proposed protocol.
1) Setup(λ) → (MSK, PK): In this algorithm, the KGC

produces the master secret key MSK and the public key
PK.

a) The KGC determines two multiplicative cyclic
groups G1 and G2 with the prime order p, a gen-
erator g of G1, a bilinear map e : G1 × G1 → G2,
a random element u ∈ G1, and a hash function
H1 : {0, 1}∗ → G1.

b) The KGC selects a random x ∈ Z∗
p as the master

secret key, i.e., MSK = x.
c) The KGC sets the public key as PK =

(G1, G2, e, p, g, gx, u, H1).
2) Extract(ID; MSK, PK) → SKID: In this algorithm,

the KGC first distributes secret keys to corresponding
users according to their identities. Users validate the
correctness of the received keys.
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a) Once receiving a user identity ID, the KGC
generates the secret key as SKID = H1(ID)x, which
is then transmitted to user UID.

b) When obtaining the secret key SKID, user UID

checks its correctness by judging whether

e(g, SKID) = e
(
gx, H1(ID)

)
(1)

holds or not. If yes, UID accepts the secret key
SKID; otherwise, UID discards it and requests a new
secret key by Extract again.

3) AuthGen(F; SKID, PK) → (τ, K, T): In this algorithm,
a data owner generates a list of authenticators for all
blocks in its data file, and computes a tag to ensure the
correctness of verification parameters related to user file.
The data owner uploads the file tag, the set of indices of
sensitive blocks, the data blocks, and their authenticators
to the cloud.

a) To support data integrity auditing, the data owner
UID first determines a random element rt ∈ Z∗

p ,
and then generates the authenticator of each data
block as ti = SKID · (H1(name||i) · udi)rt , where
1 ≤ i ≤ n. Let T = (t1, t2, . . . , tn) denote the set
of authenticators of file F.

b) To guarantee the integrity of verification
parameters, UID calculates the file tag as τ

= name||n||grt ||grs ||SSig(name||n||grt ||grs ||sskID)

|| spkID, where rs ∈ Z∗
p is used to control the

access of sensitive information.
c) UID outsources {τ , K F, T} to the cloud, which

are then removed from the local storage. K is the
set of indices of sensitive data blocks in F.

4) ProofGen(τ, F, T, C) → proof : In this algorithm, the
cloud generates the integrity proofs after receiving the
TPA’s challenging sequences.

a) The TPA first acquires the tag τ of the challenged
file and then makes sure its correctness by judg-
ing whether SSig(name||n||grt ||grs; sskID) in τ is
a valid-identity-based signature by spkID. If it is
invalid, this means that the user file F is dam-
aged, and the TPA reports this failure; otherwise,
the TPA parses the tag τ to get the total number
n of data blocks, and then produces a nonempty
challenge sequence C = {i1, i2, . . . , ic; Ht}, where
ij ∈ Z∗

n , Ht : {0, 1}∗ → Z∗
p and 1 ≤ j ≤ c. The TPA

transmits the auditing sequence C to the cloud.
b) When obtaining challenge C, the cloud first picks a

secret element rc at random, which is used to hide
the sensitive information from the TPA. The cloud
calculates an aggregated value of all audited blocks
as μ = ∑c

j=1 sjdij +rc, where sj = Ht(j). The cloud
aggregates the challenged authenticators into ν =∏c

j=1 t
sj
ij

, and computes R = e(u, grt )rc . The cloud
generates an integrity proof as proof = {μ, ν, R},
which is then fed back to the TPA for integrity
verification.

5) Verify(proof , C; PK) → q: In this algorithm, the TPA
handles the integrity verification of cloud storage. This

is implemented by judging whether

R · e(ν, g) = e
(

H1(ID)
∑c

j=1 sj , gx
)

· e

⎛

⎝
c∏

j=1

H1
(
name||ij

)sj · uμ, grt

⎞

⎠ (2)

holds or not. If yes, the cloud storage is considered to be
intact, indicated by q = 1; otherwise, the cloud storage
is considered to be compromised and q = 0.

6) Authorize(UID, U′
ID) → D: In this algorithm, the data

owner enables other users to access his/her sensitive
information.

a) To authorize a user UID′ for sensitive information
access, the data owner UID generates a delegation
D = (ω, σω), where ω = ID||ID′||grs ||grs′ and
σω = H1(ω)rs . Note that i) rs and r′

s are kept private
by UID and UID′ , respectively and ii) grs and gr′

s are
the public parameters of UID and UID′ , respectively.
The delegation D is transmitted to UID′ .

b) Once receiving the delegation D, UID′ first checks
its correctness by judging whether

e(σω, g) = e
(
H1(ω), grs

)
(3)

holds or not. If yes, UID′ accepts the delegation
D which means that UID′ is authorized by UID

to access its sensitive information; otherwise, UID′
rejects the delegation.

7) Revoke(UID, U′
ID)→(D, τ ): In this algorithm, the data

owner revokes the access authorization of other users.
a) To revoke the access authorization of UID′ , the data

owner UID first picks a new random element r̂s

instead of rs, and then updates the delegations of all
nonrevoked users by implementing the Authorize
algorithm.

b) The cloud replaces grs in the file tag with the new
value gr̂s .

8) Access(D) → W: In this algorithm, a user trans-
mits a warrant to the cloud for accessing the sensitive
information of a data owner. Depending on the validity
of the received warrant, the cloud feeds back the actual
sensitive blocks or the uniform messy codes.

a) To access the sensitive information of UID, user
UID′ first generates a warrant W = (ω, σωσ ′

ω) with
the input of D, where σ ′

ω = H1(ω)r′
s . Then, UID′

sends W to the cloud.
b) The cloud first checks whether ID and ID′ in the

W are the identities of the owner of the data being
accessed and the user that is interacting, and then
checks whether grs in the received warrant W and
grs in the file tag τ are equal or not, finally checks
the validity of W by judging

e
(
σωσ ′

ω, g
) = e(H1(ω), grs) · e

(
H1(ω), gr′

s

)
(4)

holds or not. If all these conditions are met, the
cloud transmits the actual data blocks to UID′ ; oth-
erwise, the cloud provides actual data blocks for
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insensitive blocks and uniform messy codes for
sensitive blocks.

Note that the above proposed protocol can easily achieve
the sensitive information hiding from the cloud by using the
random masking technique. To be specific, the data owner
first blinds the sensitive data blocks into d∗

i = di + γi before
ProofGen, where i ∈ K and γi = Hγ (name||i) ∈ Zp. In such
a way, the cloud can hardly learn user sensitive information
due to the unknown of Hγ . On the other hand, the data owner
transmits Hγ to the authorized users so that they can recon-
struct sensitive data blocks. When a user is revoked, the data
owner first updates the blinded sensitive data blocks using
another hash function Hγ ′ , and then only shares Hγ ′ with the
user still authorized. Generally, a data file contains not too
much sensitive information [2], making the data owner only
need to updates a few fields.

IV. THEORETICAL ANALYSIS

In this section, we provide theoretical analysis of our proto-
col from the perspective of correctness, soundness, detectabil-
ity, and privacy.

Theorem 1 (Correctness): The correctness of our proposed
is guaranteed as: 1) if the user secret key from the KGC is
correct, the distributed user always accepts it; 2) if the cloud
storage is intact, the integrity proof always passes the verifica-
tion of the TPA; 3) if the data owner is honest, the user always
accepts his/her access authorization; and 4) if the warrant from
the authorized user is correct, the cloud always provides the
actual data.

Proof:
1) The correctness of key distribution depends on (1),

which can be easily derived as

e(g, SKID) = e
(
g, H1(ID)x) = e

(
gx, H1(ID)

)
.

2) The auditing correctness relies on a checking equation,
as shown in (2), which can be represented as

R · e(ν, g) = e
(
urc , grt

) · e

⎛

⎝
c∏

j=1

t
sj
ij
, g

⎞

⎠

= e
(
urc , grt

) · e

⎛

⎝
c∏

j=1

H1(ID)x·sj, g

⎞

⎠

· e

⎛

⎝
c∏

j=1

(
H1(name||ij) · udi

)rtsj
, g

⎞

⎠

= e
(

H1(ID)
∑c

j=1 sj , gx
)

· e

⎛

⎝
c∏

j=1

H1(name||ij)sj , grt

⎞

⎠

· e
(

u
∑c

j=1 sjdij+rc , grt
)

= e
(

H1(ID)
∑c

j=1 sj , gx
)

· e

⎛

⎝
c∏

j=1

H1(name||ij)sj · uμ, grt

⎞

⎠.

3) The correctness of access authorization is determined
by (3), which can be proved as

e(σω, g) = e
(
H(ω)rs , g

) = e
(
H1(ω), grs

)
.

4) Whether the authorized users can download the sensitive
blocks depends on (4), which can be deduced as

e
(
σωσ ′

ω, g
) = e

(
H1(ω)rs , g

) · e
(

H1(ω)r′
s , g

)

= e
(
H1(ω), grs

) · e
(

H1(ω), gr′
s

)
.

Theorem 2 (Auditing Soundness): In the proposed protocol,
if the challenged blocks are not intact, the cloud cannot forge
a valid integrity proof that can be accepted by the TPA.

Proof: Our proof is based on the method of knowledge
proof. If the cloud can forge a valid integrity proof without
possessing the intact data, we can extract the intact audited
data through multiple interactions between our protocol and
a knowledge extractor. Next, we provide the detailed proof
using the following four games.

Game 0: This game is formalized in Section II and, thus,
is omitted here.

Game 1: On the basis of Game 0, this game introduces
an additional assumption: the challenger keeps all its signed
tags response to the adversary’s queries. If the adversary can
issue a valid tag which is not signed by the challenger, the
challenger reports failure and then terminates.

Analysis: Assume that the challenger terminates with an
overwhelming probability in Game 1. It also implies that the
adversary can crack the signing secret key ssk of the digital
signature SSig, which however is contradictory with the secu-
rity of SSig. Hence, the correctness of verification parameters
related to the outsourced data file can be guaranteed.

Game 2: On the basis of Game 1, this game introduces
the following assumption: the challenger records all the user
keys that it responds to the adversary. If the adversary can
provide a valid tag which is not returned from the challenger,
the challenger declares failure and then aborts.

Analysis: Assume that the challenger aborts with a non-
negligible probability in Game 2. It also means that the
adversary can compute the master key x from H(ID)x, where
ID is a user identity provided by the adversary. However, it
contradicts the hardness of the DL problem. As a result, it
is almost impossible for the adversary to compute any user’s
secret key due to the unknown of x, and then the security of
user secret key can be guaranteed.

Game 3: On the basis of Game 2, this game introduces
the following assumption: the challenger records all its gen-
erated authenticators and integrity proofs that are taken as the
response to the adversary. The challenger verifies the correct-
ness of each proof from the adversary. If the integrity proof
produced by the adversary can pass the validation of the chal-
lenger, but the aggregate ν is not equal to ν′ that is computed
using the locally recorded data, the challenger declares failure
and then terminates.

Analysis: We first build a simulator that tries to address the
CDH problem, i.e., given g, gz, and h, its goal is to compute
hz. Then, we demonstrate that if the adversary always wins
Game 3 against the challenger, the simulator can address the
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CDH problem with an overwhelming probability. The simu-
lator behaves in the same way as the challenger in Game 2,
except the following.

1) The simulator randomly selects an element z ∈ Z∗
p

and then computes gz. The simulator also randomly
determines two elements a, b ∈ Z∗

p and then sets
u = ga · hb.

2) The simulator programs the random oracle as
H1(name||i) = gei/(gadi · hbdi), where ei is a ran-
dom element in Z∗

p . According to the AuthGen
algorithm, the simulator can compute the authenticator
of the input block as ti = SKID · (H1(name||i) · udi)rt ,
where SKID = H(ID)x is extracted by using the Extract
algorithm, and rt is a random element in Z∗

p .
3) The simulator performs the integrity auditing through

the interaction with the adversary. As formalized in this
game, if the adversary passes the integrity verification,
but its aggregated values ν is not as expected, this game
is terminated.

On the one hand, since the proof (μ, ν, R) from the adversary
is assumed to pass the integrity verification, it can make the
following equation hold:

R · e(ν, g) = e
(

H1(ID)
∑c

j=1 sj , gx
)

· e

⎛

⎝
c∏

j=1

H1(name||ij)sj · uμ, grt

⎞

⎠. (5)

On the other hand, the simulator can utilize the locally
recorded blocks and authenticators to compute the aggregated
values μ′ and ν′.

According to the correctness of the proposed protocol, we
can obtain

R · e
(
ν′, g

) = e
(

H1(ID)
∑c

j=1 sj , gx
)

· e

⎛

⎝
c∏

j=1

H1(name||ij)sj · uμ′
, grt

⎞

⎠. (6)

It is obvious that μ �= μ′; otherwise, we will have ν =
ν′, which contradicts with the assumption in this game. Let

μ = μ′ − μ, which is not equal to 0. Dividing (6) by (5),
we have

e(ν′/ν, g) = e
(
u
μ, grt

)
. (7)

By assuming grt = gz, we can convert (7) into

e
(
ν′/ν, g

) = e
(
(ga · hb)
μ, gz

)

= e
(
(gza
μ · hzb
μ), g

)
. (8)

From (8), we can observe that

hz = (
ν′/ν · g−za
μ

)1/(b
μ)
.

According to the above equation, we find that the CDH
problem is unsolvable only if b
ν = 0. The probability that
b
ν = 0 is at most 1/p, which is negligible due to the large
value of p. This means that the simulator is able to address the

CDH problem with a high probability 1 − 1/p, which is con-
tradictory with the hardness assumption of the CDH problem.
Thereafter, the adversary can hardly win Game 3 against the
challenger. It also implies that the success probabilities of the
adversary in Game 2 and Game 3 have a negligible difference.

Game 4: On the basis of Game 3, this game introduces an
additional assumption: if the aggregated block μ is not equal to
the expected μ′ aggregated by the local blocks, the challenger
reports failure and terminates.

Analysis: We first build a simulator that aims to address the
DL problem. Specifically, the simulator tries to compute an
element z satisfying h = gz, in which g and h are given. Then,
we show that if the adversary always succeeds in this game,
the simulator is able to address the DL problem with a high
probability. The simulator performs in the same way as the
challenger in Game 3, except the following.

1) The simulator picks two random elements a, b ∈ Z∗
p and

then sets u = ga · hb.
2) The simulator performs the integrity auditing task

through the interaction with the adversary. As specified
in Game 3, if the adversary wins, but its aggregated μ

is not as expected, this game is terminated.
Due to the same reason, the simulator can also obtain (5)
and (6) in this game like in Game 3. Through these two
equations, we observe that

e
(

H1(ID)
∑c

j=1 sj , gx
)

·e
⎛

⎝
c∏

j=1

H1(name||ij)sj · uμ, grt

⎞

⎠

= R · e(ν, g) = R · e
(
ν′, g

)

= e
(

H1(ID)
∑c

j=1 sj , gx
)

·e
⎛

⎝
c∏

j=1

H1(name||ij)sj · uμ′
, grt

⎞

⎠. (9)

From Game 3, we can obtain ν = ν′. According to (9), we
have uμ = uμ′

, which further implies that

1 = u
μ =
(

ga · hb
)
μ = ga
μ · hb
μ (10)

where 
μ = μ′ − μ. According to the assumption in this
game, we have 
μ �= 0, and then (10) can be transformed
into

h = g− a
μ
b
μ = g− a

b

which is the solution of the DL problem, unless b is equal to
0. The probability of b = 0 is only 1/p, which is negligible.
This means that the simulator can address the DL problem
with a high probability 1 − 1/p, which is contradictory to the
hardness assumption of the DL problem. Therefore, the adver-
sary cannot succeed in Game 4 against the challenger with
an overwhelming probability. It also implies that the success
probabilities of the adversary in Game 3 and Game 4 have a
negligible difference.

Based on the above discussion, the difference among
these games is negligible. Thus, there exists a knowledge
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extractor that can successfully reconstruct the audited blocks.
Specifically, the extractor launches c different challenges
against the same blocks dij(j = 1, 2, . . . , c). With the input
of the received integrity proofs, the extractor can first con-
struct c independently linear equations with respect to dij(j =
1, 2, . . . , c), and then extract dij(j = 1, 2, . . . , c) by using these
equations. To sum up, if the integrity proof can be accepted
by the TPA, the cloud must truly possess user data.

Theorem 3 (Detectability): In the proposed protocol, if a
user file on the cloud has n blocks, but m of them are damaged,
the probability of detecting this abnormality is no less than
1 − (n − m/n)c, where c is the number of challenge elements.

Proof: The damaged blocks can be detected only in the
case that at least one of them is challenged by the TPA. Let
mc denote the number of damaged blocks that are challenged,
and Pc denote the probability of detecting the data corruption.
Then, we can have

Pc = P{mc ≥ 1} = 1 − ∏c−1
i=0

n−m−i
n−i ≥ 1 − ( n−m

n

)c
.

If c is sufficiently large, Pc will be nonnegligible. The proof
is completed. For example, if 100 of 1000 blocks are corrupted
and ten blocks are challenged in each data auditing, then the
probability of detecting this abnormality is at least 95.8%,
which is satisfactory as expected.

Theorem 4 (Sensitive Information Hiding):
1) The TPA cannot learn users’ sensitive information from

the integrity proofs in the phase of data auditing;
2) Unauthorized users cannot obtain the data owners’ sen-

sitive information from cloud storage in the phase of
data access.

Proof:
1) From the received integrity proof (μ, ν, R), the TPA can

have the following observations.
a) Due to the randomness of rc, user blocks can

hardly be reconstructed from μ = ∑c
j=1 sjdij + rc.

Note that even though the TPA can repeatedly
launch multiple challenge sequences against the
same user blocks, still it can hardly solve these
blocks. This is because rc is regenerated in each
challenge.

b) Because of the hardness of the CDH problem, it is
almost impossible to solve rc from R = e(u, grt )rc .

c) Since the values of H(ID)x and rt are unknown,
user blocks can also hardly be decoded from ν =∏c

j=1 t
sj
ij

= H(ID)x · (H1(name||i) · udi)rt .
Thus, users’ sensitive information can be prevented from
the TPA.

2) Obviously, unauthorized users cannot recover the data
owners’ sensitive blocks from the downloaded messy
codes. In addition, unauthorized users also cannot
directly download the sensitive blocks of the data owners
through forging a warrant that can pass the verification
of the cloud, due to the following reasons.

a) To fulfill the first two requirements of the cloud,
unauthorized user has to embed the identities and
grs in the right place of the warrant, where grs is
the public parameter of the targeted data owner.

b) For the last requirement of the cloud, unauthorized
user has to construct a valid warrant satisfying (4).
However, if unauthorized users succeed in doing
so, it means that rs can be solved from grs , which
is contradictory to the hardness assumption of
the CDH problem. That is, to say, the unautho-
rized user cannot cheat the cloud with the forged
warrants.

Thereafter, users’ sensitive information can also be
protected from unauthorized users.

V. PERFORMANCE EVALUATION

In this section, we show the theoretical comparison between
the proposed protocol and the previous [2] from the perspec-
tives of storage, communication and computational costs. We
also conduct intensive experiments to validate the advantages
of our protocol.

A. Theoretical Comparison

We introduce some new notations for describing the opera-
tions in our protocol. Let P denote a bilinear pairing, M1 and
M2 denote a multiplication in G1 and G2, E1 and E2 denote
an exponentiation in G1 and G2, Az denote an addition in Z∗

p ,
Sz denote a subtraction in Z∗

p , Mz denote a multiplication in
Z∗

p , H denote a hash computation for different hash functions,
k denote the number of sensitive data blocks, l denote the
length of the file identifier, NA and Nc denote the number of
data access and integrity auditing, and UA denote the number
of authorized users. In addition, the length of an element in
Z∗

n , Z∗
p , G1, and G2 is represented as |n|, |p|, |g1| and |g2|,

respectively.
Storage Cost: In our protocol, the storage cost is mainly

determined by the outsourced data blocks and their authenti-
cators. Thus, we concentrate on the storage cost incurred by
these data. The size of the outsourced data blocks and their
authenticators is both n · |p| bits. Thereafter, the total storage
cost is about 2n · |p| bits.

Communication Cost: According to the proposed protocol,
the communication cost contains two parts, offline and online.
The offline communication cost is mainly caused by outsourc-
ing data blocks and their authenticators to the cloud, whose
size is 2n · |p| bits. The online communication cost is mainly
incurred by data access and integrity auditing. For each access,
the authorized user downloads data from the cloud, which
incurs n · |p| communication cost. For each auditing, the TPA
first transmits a challenge sequence C = {i1, i2, . . . , ic; Ht} to
the cloud, whose size is c · |n| + |p| bits; the cloud then feeds
back an integrity proof {μ, ν, R}, whose size is |p|+|g1|+|g2|
bits. As a consequence, the total online communication cost
is about nNA · |p| + Nc · (c · |n| + 2 · |p| + |g1| + |g2|) bits.

Computational Cost: In comparison to the other algorithms,
the computational cost of system setup and key extraction is
negligible and, thus, is omitted here. Before data outsourcing,
the client has to compute the authenticators of file blocks,
which requires 2nM1+2nE1+nH computational cost. During
data auditing, the TPA first generates a challenge sequence,
which incurs a negligible computational cost; then, the cloud
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TABLE II
PERFORMANCE COMPARISON BETWEEN THE PROPOSED PROTOCOL AND THE STATE-OF-THE-ART METHOD [2]

calculates an integrity proof {μ, ν, R}, which needs P+cAz +
(c−1)M1 +cMz +cE1 +E2 +cH computational cost; finally,
the TPA checks the integrity of cloud storage, which requires
3P + (c − 1)Az + (c − 1)M1 + 2M2 + (c + 3)E1 + (c + 1)H
computational cost. To authorize a user, the data owner first
generates a delegation, which incurs E1 + H computational
cost; then the user to be authorized checks the correctness of
the received delegation, which needs 2P + H computational
cost. Thus, the total time cost of access authorization is UA ·
(2P + E1 + 2H). To revoke a user, the data owner updates the
delegations of all nonrevoked users, which needs UA · (2P +
E1 + 2H) computational cost.

Comparison With the State-of-the-Art Method [2]: The
recent work [2] is regarded as one of the most efficient
protocols in the field of cloud storage auditing with sensi-
tive information hiding. As shown in Table II, we have the
following observations.

1) The proposed protocol has a lower storage cost than [2].
This is due to the fact that the sanitizer in [2] needs to
store the sanitizing values of sensitive blocks, which is
avoided in our proposed protocol.

2) The proposed protocol has a lower communication cost
than [2]. The main reason is that during data outsourc-
ing and data access, users’ data in our protocol can
be directly transferred between the users and the cloud
without the relay of the sanitizer in [2].

3) Compared with [2], our proposed protocol improves the
computational cost. During authenticator generation, our
protocol has the computational cost O(n), which is lower
than [2] whose computational cost is O(n + k). In proof
generation and integrity verification, the complexity of
these two protocols is both O(c).

According to the above discussions, the proposed proto-
col can achieve sensitive information hiding in remote data
auditing without the help of a sanitizer, which brings the fol-
lowing advantages. First, the expensive outlays in purchasing
and maintaining a third-party server is avoided. Second, the
storage, communication and computational costs are reduced.

Furthermore, the proposed protocol allows data owners to
enable or disable other users to access their sensitive data
blocks, which can be applied to more application scenarios.

B. Experimental Results

In this section, we provide experimental results to vali-
date the advantages of our protocol, implemented by using
the development tool Eclipse with the JAVA Pairing-Based
Cryptography Library [32]. The workstation is constructed on
i5-7200U CPU and 8-GB RAM. The size of user files is set to
20 KB, consisting of 1000 blocks. The elliptic curve is cho-
sen as y2 = x3 + x with |p| = 160 bits and |g| = 512 bits.
The default number of data blocks, the challenged blocks, the
sensitive blocks, the data access and the integrity auditing is
set to 1000, 200, 20, 1, and 1, respectively. In addition, each
result is averaged by 100 runs.

Storage Cost: The storage cost is mainly determined by the
size of user blocks and their authenticators. As depicted in
Fig. 3(a), we can find that the storage costs of these two pro-
tocols both increase with the number of sensitive blocks as
expected. The storage cost of the proposed protocol is much
lower than [2], because [2] needs to store the sanitized val-
ues of sensitive blocks in addition to the indices of sensitive
blocks.

Communication Cost: The communication cost is domi-
nated by interactions among different entities in the protocols.
As depicted in Fig. 3(b), the communication costs of these
two protocols are both proportional to the number of data
blocks, because the larger number of data blocks, the larger
amount of data transmission during data outsourcing. The
offline communication cost of the proposed protocol is about
half of that of [2]. This is due to the fact that users in [2]
have to transmit the data to the sanitizer at first and then
the sanitizer forwards the sanitized data to the cloud, while
users in the proposed protocol directly send the data to
the cloud. The online communication cost of our protocol
is also about half of that of [2]. This is because that the
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(a) (b)

(c) (d) (e)

Fig. 3. Performance comparison between the proposed protocol and the state-of-the-art method [2]. (a) Storage cost. (b) Communication cost. (c) Computational
cost of authenticator generation. (d) Computational cost of data auditing. (e) Computational cost of access control.

online communication cost is dominated by data access, espe-
cially in the application of cloud storage with large-scale user
files.

Computational Cost: The computational cost is the highest
during data outsourcing and integrity auditing. For data out-
sourcing, we provide the computational cost of authenticator
generation in Fig. 3(c), which accounts for the most proportion
in data outsourcing. It can be found that when the number of
sensitive blocks varies from 0 to 1000, the computational cost
of authentication generation is almost constant in the proposed
protocol, while the computational cost increases in [2]. This
is due to the fact that the recomputation on the authenticators
of sensitive data blocks in [2] is eliminated in our protocol.
The gap of the computational cost between these two pro-
tocols is proportional to the number of sensitive blocks in
term of authentication generation, which is because that the
more sensitive data blocks, the more data authenticators need
to be recalculated in [2]. For data auditing, we focus on the
computational costs of proof generation and integrity verifica-
tion, as shown in Fig. 3(d), which takes up the overwhelming
majority in data auditing. We can observe that no matter in
proof generation or in integrity verification, the computational
costs of these two protocols increase with the number of chal-
lenged blocks due to aggregation operations performed on the
challenged data. These two protocols have similar computa-
tional costs in proof generation and integrity verification as
expected.

Furthermore, we provide the computational cost of access
control in Fig. 3(e). It can be observed that the compu-
tational costs of access authorization and revocation both
increase with the number of authorized users. This is because

authorized users all need to verify the correctness of del-
egations from the data owner. The proposed protocol can
efficiently support access authorization and revocation. It takes
little time to distribute the delegations to all authorized users.
Note that [2] dose not support access control of sensitive
information.

VI. CONCLUSION

In this article, we presented an ID-based cloud storage audit-
ing protocol for data sharing with access control of sensitive
information, which allows data owners to enable or disable
other users to access their sensitive information. Our solution
realizes the property of sensitive information hiding without
the need of a third-party sanitizer, which can avoid extra
outlays on purchasing and maintaining a server for sanitiz-
ing user data. To achieve this, the data owner first distributes
delegations to other users for access authorization, and then
the authorized users transmit warrants to the cloud, generated
by using the received delegation. If this warrant is verified
successfully, the cloud provides the actual sensitive blocks;
otherwise, the cloud feeds back uniform messy codes. In addi-
tion, data owners in our solution can control the access of
their sensitive information by updating the delegations of their
authorized users. We validated the security and efficiency of
the proposed protocol through comprehensive theoretical anal-
ysis and experimental results. In future work, it is interesting
to realize cloud storage auditing with decentralized access con-
trol of sensitive information in order to avoid the credibility
problem caused by centralized access control of the cloud or
the sanitizer in [2].
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