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Abstract. Deep cross-media computing faces adversarial example atta-
cks, adversarial training is an effective approach to enhance the robust-
ness of machine learning models via adding adversarial examples into the
training phase. However, existing adversarial training methods increase
the advantage of membership inference attacks, which aim to deter-
mine from the model whether an example is in the training dataset.
In this paper, we propose an adversarial training framework that guar-
antees both robustness and membership privacy by introducing a tailor-
made example, called reverse-symmetry example. Moreover, our frame-
work reduces the number of required adversarial examples compared
with existing adversarial training methods. We implement the framework
based on three adversarial training methods on FMNIST and CIFAR10.
The experimental results show that our framework outperforms the orig-
inal adversarial training with respect to the overall performance of accu-
racy, robustness, privacy, and runtime.

Keywords: Adversarial training · adversarial examples · membership
inference attacks

1 Introduction

Deep Neural Networks (DNNs) have been employed across various real-world
applications in deep cross-media computing, such as intelligent image analysis [7,
17], natural language processing [1], and speech recognition [4]. Unfortunately,
deep learning models trained by DNNs are found to be vulnerable to evasion
attacks [3,12], in which an attacker misleads deep learning models by adding
imperceptible perturbations to natural examples, called adversarial examples.
In practice, those adversarial examples can be used for crime by tricking models
deployed in daily applications, such as facial recognition [15].
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One of the promising approaches to defend against evasion attacks is adver-
sarial training, which can be classified into two categories: empirical and veri-
fiable [20]. The core idea of empirical adversarial training is to add adversarial
examples in the training phase of a model to enhance the robustness [10]. To
make the adversarial examples more representative of the adversarial domain,
adversarial training usually employs multiple iterative processes [18], such as
Projected Gradient Descent (PGD) [8]. Therefore, empirical adversarial train-
ing suffers from high runtime in the training phase. On the other hand, verifiable
adversarial training estimates the adversarial domain around natural examples
in the training phase, which usually does not significantly increase the run-
time [5,11]. However, since the estimation is done for the worst case, verifiable
adversarial training sacrifices the accuracy of the model.

In addition to the above-mentioned performance issues, existing adversar-
ial training methods also increase the privacy risk of deep learning models [20].
Membership inference attack is a typical privacy threat, in which an attacker tries
to determine whether a given example is used to train a model [16]. This kind of
privacy leakage is dangerous in many applications. Taking medical recognition
as an example, an attacker can infer the membership information of a patient’s
medical record from a special disease diagnosis model by the membership infer-
ence attack, which violates the patient’s privacy. Experimental results in [20]
showed that, compared with the normally trained models, both empirical and
verifiable adversarial training lead to an increase in the advantage of membership
inference attacks.

In this paper, we aim to reinforce the paradigm of current empirical adver-
sarial training so as to reduce the privacy risk and runtime while maintaining
robustness and accuracy. We focus on empirical adversarial training due to its
high accuracy compared with verifiable methods. The key insight is that the
adversarial examples generated in the training phase are clustered in specific
areas, which means that the model may only focus on local features of the
adversarial domain. Therefore, we introduce additional tailor-made examples to
reduce the model’s attention to the adversarial domain, which also reduces the
privacy risk. Since those tailor-made examples can be efficiently generated and
they retain the features of natural examples, we can replace parts of adversar-
ial examples with those tailor-made examples to reduce the runtime without
significantly reducing robustness and accuracy.

In summary, we make the following main contributions.

– We propose a framework that can integrate and enhance existing adversarial
training methods. Moreover, we extend our framework to tune the trade-offs
between accuracy, robustness, privacy, and runtime.

– To demonstrate the effectiveness of our framework, we implement the frame-
work based on three empirical adversarial training methods on FMNIST and
CIFAR10. The results show that our framework has better overall perfor-
mance than the underlying methods.
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– To explore the trade-offs in our framework, we implement 9 variants on
FMNIST and CIFAR10. The results provide helpful guidance for develop-
ers to choose settings that meet their various requirements.

2 Background and Related Work

2.1 Workflow of Empirical Adversarial Training

Empirical adversarial training is an effective way to resist adversarial examples.
The main idea of empirical adversarial training is to transform the problem of
finding a robust model into an optimization problem that minimizes the combi-
nation of natural loss and robust loss.

At the beginning of the training phase, a model is initialized by determining
its architecture and hyper-parameters, such as learning rate and step size. Then,
the model is repeatedly trained for a certain number of training rounds. Finally,
an optimal model is outputted at the end of the training phase. In each training
round of adversarial training, the model Fθ learns the training dataset through
the following three procedures: (1) Sampling. A set of (xnat, y), i.e., batch data
(Xnat,y), is sampled from the training dataset as same as the way in natural
training. (2) Generating. For each (xnat, y) in the batch data, an adversarial
example xadv is generated. (3) Updating. The weights θ is updated by minimizing∑

xnat∈Xnat
�(Fθ, (xnat,xadv, y)). More specifically,

�(Fθ, (xnat,xadv, y)) = α · �n(Fθ, (xnat, y))
+ (1 − α) · �r(Fθ, (xnat,xadv, y)),

where �n is the natural loss as in natural training, i.e., cross-entropy loss, �r is
the robust loss, and α is used to balance the natural loss and robust loss.

2.2 Membership Inference Attacks

Membership inference attacks aim at determining whether an example was in
the training dataset of a given machine learning model [2,9]. This kind of attack
may leak sensitive information of individuals once combined with background
knowledge about the model. Yeom et al. [22] consider an example as a member
of the training dataset if the final prediction corresponds with the ground-truth
label. Salem et al. [14] set a threshold for the prediction confidence to determine
membership, which does not require an attacker to decide the ground-truth label
for target examples. Their experimental results show that this confidence thresh-
olding method can obtain a similar inference accuracy with that of a complex
attack methods. Song et al. [19] proposed to use the entropy of the confidence
as the threshold to implement the membership inference attack. To improve the
inference advantage, we use the confidence and its corresponding ground-truth
label to compute cross entropy as the threshold, called cross-entropy threshold-
ing, to implement the membership inference attack.
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3 Our Method

We propose a privacy-enhancing adversarial training framework, called PINEAT,
which is a recursive acronym for PINEAT Is Not Exactly Adversarial Training.
After the design goals are stated, we give an overview of our framework and then
describe the details.

3.1 Design Goals

Our framework aims to achieve the following goals.

– Universal applicability. Our framework should be compatible with existing
(empirical) adversarial training methods. Specifically, we should not modify
the generation of adversarial examples and loss functions.

– Adversarial robustness. The model trained by our framework should be
able to resist adversarial examples. Moreover, the adversarial robustness
should be similar to that of the underlying adversarial training method.

– Membership privacy. Compared with the underlying adversarial training
method and even natural training method, the model trained by our frame-
work should be resistant to the membership inference attack.

– Runtime reduction. The runtime of our framework should be lower than
the runtime of the underlying adversarial training methods.

(a) The index of natural example is 300
in FMNIST.

(b) The index of natural example is 304
in FMNIST.

Fig. 1. Two natural examples and all their adversarial examples via PCA dimension
reduction [13].

3.2 Overview

We have analyzed the adversarial examples generated in three main adver-
sarial training methods, including PGD-based [10], Distribution-based (Dist-
based) [18], and Difference-based (Diff-based) [23]. The key observation is that
adversarial examples for the training dataset are clustered around specific areas
of natural examples, as shown in Fig. 1. Therefore, the model may overfit in
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those areas, i.e., adversarial domains around natural examples, resulting in an
increased privacy risk of the model in adversarial domains.

To alleviate the model’s excessive attention to adversarial domains, we can
introduce additional examples in the training phase. These additional examples
should increase the dispersion of all examples based on the same natural exam-
ple used for training as much as possible. Therefore, we design a tailor-made
example, called reverse-symmetry example, which is symmetrical with an adver-
sarial example centered at the natural example. To keep the ground-truth label
of the reverse-symmetry example consistent with that of the natural example, we
require the reverse-symmetry example to satisfy the perturbation constraint as
the adversarial example, i.e., xrs ∈ Bε(xnat), where xrs is the reverse-symmetry
example and xnat is the natural example.

To reduce the training runtime, we replace parts of adversarial examples
whose generation is time-consuming with lightweight reverse-symmetry exam-
ples. Since reverse-symmetry examples retain the features of natural examples
and enough adversarial examples are involved, this replacement will not reduce
accuracy and robustness.

Initialize model

Sample batch data (Xnat,y) from training dataset

Generate adversarial example xadv for each xnat ∈ Xnat

Update weights θ by minimizing
∑

xnat∈Xnat
�(Fθ, (xnat,xadv, y))

Calculate xrs based on (xnat , xadv) for each xnat ∈ Xnat

Update weights θ by minimizing
∑

xnat∈Xnat
�(Fθ, (xnat,xrs, y))

Whether training rounds achieve

Output optimal model

Yes

No

Fig. 2. Workflow of PINEAT, where the red boxes indicate the differences from empir-
ical adversarial training. (Color figure online)

3.3 Design Details

PINEAT is a framework that extends the current empirical adversarial train-
ing paradigm, as shown in Fig. 2. Compared with existing adversarial training
methods, PINEAT introduces two additional procedures to each training round.
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First, an reverse-symmetry example is calculated based on the natural exam-
ple and the corresponding adversarial example, satisfying xrs + xadv = xnat ∗ 2,
where xrs is the reverse-symmetry example, xadv is the adversarial example, and
xnat is the natural example. Since xadv is generated under the perturbation con-
straint Bε(xnat), xrs also satisfies Bε(xnat) and is indistinguishable from xnat by
human eye, which means that xrs and xnat have the same ground-truth label.
Second, the model is updated again by minimizing the combination of loss on
the natural examples and loss on reverse-symmetry examples. The loss function
depends on the underlying adversarial training method.

Note that since the model is updated twice in a training round, our framework
halves the number of training rounds required by the underlying adversarial
training method. In other words, half of the adversarial examples generated
in traditional adversarial training methods are replaced by reverse-symmetry
examples in PINEAT. We denote this setting PINEAT-1/1, which means the
ratio of the number of adversarial examples and the number of reverse-symmetry
examples is 1:1.

x�
rs

xnat xadv,1

xadv,2

xrs

x�
adv

Fig. 3. Generation of reverse-symmetry examples in PINEAT-2/1. After generating
two adversarial examples for the natural example, we aggregate the noises in xadv,1

and xadv,2 against the natural example and get x�
adv. The red line represents the

noise tensor xadv,2 − xnat that is translated from xnat to xadv,1. Therefore, we have
x�

adv − xnat = (xadv,1 − xnat) + (xadv,2 − xnat). Then, we calculate x�
rs for x�

adv where
x�

rs + x�
adv = 2xnat. Finally, we get xrs by clip x�

rs, i.e., xrs = min(max(x�
rs,xnat −

ε),xnat + ε).

x�
rs

xnat xadv

xrs,1

xrs,2

Fig. 4. Generation of reverse-symmetry examples in PINEAT-1/2. We calculate x�
rs

which is symmetric with xadv respect to xnat. Then, we decompose the noise in x�
rs

into the two reverse-symmetry examples xrs,1 and xrs,2. The red line represent the
noise tensor assigned to x2

rs, i.e., x�
rs − xrs,1 = xrs,2 − xnat. In this setting, the xrs,1

and xrs,2 meet the Bε(xnat) without cliping, due to x�
rs ∈ Bε(xnat).
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Variants. We can adjust the adversarial/reverse-symmetry examples ratio to
obtain different settings, which also means the number of model updates in
a training round and the number of training rounds are changed accordingly.
Specifically, in each training round of PINEAT-n/m, m reverse-symmetry exam-
ples are calculated for n adversarial examples, satisfying that x�

adv + x�
rs =

xnat ∗ 2, where x�
adv aggregates the noises in n adversarial examples (i.e.,

x�
adv − xnat =

∑n
i=1(xadv,i − xnat), where xadv,i represents the i-th adversarial

example) and the noise in x�
rs is decomposed into m reverse-symmetry exam-

ples. To generate adversarial examples, we use n different random seeds for one
natural example. To calculate multiple reverse-symmetry examples, firstly we
randomly generate m − 1 reverse-symmetry examples under the perturbation
constraint Bε(xnat). Then, we calculate the last reverse-symmetry example by
xrs,m = min(max(x�

rs − ∑m−1
j=1 xrs,j ,xnat − ε),xnat + ε), where xrs,j represents

the j-th reverse-symmetry example. The function min(max(·,xnat − ε),xnat + ε)
guarantees that the last reverse-symmetry example also satisfies the perturbation
constraint Bε(xnat). In PINEAT-n/m, the model is updated n + m times in one
training round thus our framework needs about 1/(n+m) of the number of train-
ing rounds required by the underlying adversarial training method. Figure 3 and
4 illustrate the generation of reverse-symmetry examples in PINEAT-2/1 and
PINEAT-1/2, respectively.

4 Experimental Setup

4.1 Implementation, Dataset, and Model Architecture

The PGD-based adversarial training and Dist-based adversarial training are
implemented based on TensorFlow, and the Diff-based adversarial training is
implemented based on Pytorch. All implementations run on a server with Intel
Xeon E5-2680, three Nvidia Tesla V100 32GB GPU, and 128G RAM. The
datasets and model architectures used in our experiments are identical with
those in [20]. Specifically, we adopt two standard datasets: FMNIST [21] and
CIFAR10 [6].

4.2 Baselines

We adopt four kinds of baselines: natural training, original adversarial train-
ing, AdvNat-1/1, and AdvRan-1/1. For the original adversarial training, we
implement three methods: PGD-based adversarial training, Dist-based adver-
sarial training, and Diff-based adversarial training. Following [20], we set the l∞
perturbation budget ε to be 0.1 on FMNIST and 8/255 on CIFAR10.

For each adversarial training, we develop two additional baselines: AdvNat-
1/1 and AdvRan-1/1. In AdvRan-1/1, we replace half of adversarial examples
with random examples near the natural example under the perturbation con-
straint Bε(xnat). In AdvNat-1/1, we use the natural example to replace the half
of adversarial examples.
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Table 1. Accuracy, robustness, privacy, and runtime of the model trained by different
methods on FMNIST and CIFAR10, where the bold number indicates the best value
between the methods on the same dataset and the underlined number indicates the
best value between the methods based on the same adversarial training on the same
dataset.

DS Method Accuracy Robustness Privacy Time

Atrain Atest Rtrain Rtest PEnat PEadv PMAX

FMNIST Natural 1.0000 0.9281 0.0534 0.0514 0.5718 0.5011 0.5718 1.00 h

PGD Original 0.9993 0.9088 0.9692 0.6776 0.5910 0.6493 0.6493 6.18 h

AdvNat-1/1 1.0000 0.9160 0.9148 0.6737 0.5877 0.6282 0.6282 3.88 h

AdvRan-1/1 0.9999 0.9129 0.9661 0.6730 0.6008 0.6506 0.6506 3.93 h

PINEAT-1/1 0.9977 0.9136 0.8791 0.6824 0.5683 0.6052 0.6052 3.90 h

Dist Original 0.9795 0.9084 0.6768 0.5139 0.5975 0.6043 0.6043 6.78 h

AdvNat-1/1 1.0000 0.9333 0.5073 0.4494 0.5819 0.5562 0.5819 3.85 h

AdvRan-1/1 0.9731 0.9090 0.3409 0.3108 0.5562 0.5330 0.5562 3.90 h

PINEAT-1/1 0.9332 0.8990 0.6175 0.5371 0.5410 0.5517 0.5517 3.82 h

Diff Original 0.9933 0.9082 0.9009 0.7264 0.5807 0.5936 0.5936 8.83 h

AdvNat-1/1 0.9830 0.9093 0.8353 0.7258 0.5601 0.5614 0.5614 4.60 h

AdvRan-1/1 0.9828 0.9095 0.8367 0.7250 0.5621 0.5625 0.5625 5.13 h

PINEAT-1/1 0.9832 0.9102 0.8495 0.7305 0.5616 0.5666 0.5666 5.12 h

CIFAR10 Natural 1.0000 0.9528 0.0000 0.0000 0.5769 0.5001 0.5769 11.18 h

PGD Original 1.0000 0.8704 0.9838 0.4726 0.7627 0.7892 0.7892 80.75 h

AdvNat-1/1 0.9999 0.8900 0.8993 0.4679 0.6638 0.7264 0.7264 44.24 h

AdvRan-1/1 0.9894 0.8703 0.7763 0.4572 0.6412 0.6747 0.6747 45.25 h

PINEAT-1/1 0.9774 0.8687 0.7365 0.4706 0.6182 0.6490 0.6490 44.07 h

Dist Original 1.0000 0.9027 0.4035 0.2686 0.6760 0.6434 0.6760 73.90 h

AdvNat-1/1 1.0000 0.9259 0.3666 0.2940 0.6148 0.5957 0.6148 39.35 h

AdvRan-1/1 0.9996 0.8950 0.3127 0.2382 0.6629 0.6273 0.6629 39.05 h

PINEAT-1/1 0.9996 0.9039 0.3093 0.2410 0.6560 0.6242 0.6560 39.67 h

Diff Original 0.9975 0.8917 0.7175 0.4749 0.6190 0.6541 0.6541 35.18 h

AdvNat-1/1 0.9725 0.8771 0.5502 0.4398 0.5754 0.5916 0.5916 20.67 h

AdvRan-1/1 0.9796 0.8885 0.4555 0.3906 0.5748 0.5830 0.5830 22.50 h

PINEAT-1/1 0.9941 0.9053 0.5458 0.4223 0.5899 0.6000 0.6000 22.55 h

4.3 Metrics

We evaluate the performance of our basic framework and its variants from the
following four aspects.

– Accuracy. This metric is the proportion of examples in the dataset that are
categorized to the correct class. The accuracy of the models on the natural
training example is denoted as Atrain and the accuracy of the models on the
natural test example is denoted as Atest.

– Robustness. We use the ability of a model to correctly classify adversarial
examples to indicate the robustness of the model. The adversarial examples
are generated via PGD method for each natural example in the dataset. We
denote the accuracy on the adversarial examples generated from training
dataset as Rtrain, and the accuracy on the adversarial examples from test
dataset as Rtest.

– Privacy. We use membership inference accuracy to measure the privacy of a
model. We use PEnat to denote the accuracy of CrossEntropy-thresholding
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method which exploits natural examples, and PEadv to denote the accuracy
of the method which exploits adversarial examples generated under Bε.

– Runtime. This metric refers to the time for training a model in our experi-
mental environment.

5 Experimental Results

5.1 Performance of Our Basic Framework

We evaluate the accuracy, robustness, privacy, and runtime of our basic frame-
work PINEAT-1/1 and the baselines. The performance comparison is shown in
Table 1.

Observation 1. In terms of accuracy, the model trained by PINEAT-1/1 in
most cases performs better than the original adversarial training method and
AdvRan-1/1, but performs worse than AdvNat-1/1.

We focus on the metric Atest since it can better reflect the accuracy of the
model in practice. Diff-based PINEAT-1/1 outperforms the corresponding orig-
inal method, AdvNat-1/1, and AdvRan-1/1 on both FMNIST and CIFAR10.
However, PGD-based and Dist-based AdvNat-1/1 outperform others, with an
increase of at most 3.43%.

Observation 2. In terms of robustness, the model trained by PINEAT-1/1 per-
forms similarly to the original adversarial training method and in most cases
performs better than AdvNat-1/1 or AdvRan-1/1.

We focus on the metric Rtest since it can better reflect the robustness of the
model in practice. On FMNIST, PINEAT-1/1 outperforms the original method
while the latter outperforms AdvNat-1/1 and AdvRan-1/1. On CIFAR10, the
original method in most cases outperforms others while the difference between
PINEAT-1/1 and the original method is at most 5.26%.

Observation 3. In terms of privacy, the model trained by PINEAT-1/1 per-
forms better than the original adversarial training method, similar to AdvNat-
1/1, and in most cases better than AdvRan-1/1.

We focus on the metric PMAX since in practice an attacker can implement
various membership inference attacks and use the best result. PINEAT-1/1 out-
performs the original method on both FMNIST and CIFAR10, with an increase
of at least 2% and at most 14.02%. Moreover, PINEAT-1/1 sometimes even
outperforms the natural training method.

Observation 4. In terms of runtime, PINEAT-1/1 performs better than the
original adversarial training method and performs similarly to AdvNat-1/1 and
AdvRan-1/1.
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The runtime depends on the number of adversarial examples generated in
the training phase, which is a time-consuming operation. Therefore, the natural
training method always has the best runtime while the original adversarial train-
ing method always has the worst. PINEAT-1/1, AdvNat-1/1, and AdvRan-1/1
have a similar runtime since half of the adversarial examples are replaced in
these methods. AdvNat-1/1 has the least runtime, because it misses a step com-
pared to AdvRan-1/1 (generate random examples) and PINEAT-1/1 (calculate
tailor-made examples).

Observation 5. PINEAT-1/1 achieves a good balance between accuracy, rob-
ustness, privacy, and runtime.

This observation can be obtained directly from the previous three observa-
tions. Specifically, in terms of overall performances, the best method on FMNIST
and CIFAR10 is Diff-based PINEAT-1/1.

5.2 Performance of Our Framework Variants

In PINEAT-n/m, n adversarial examples and m reverse-symmetry examples are
generated in a training round and the number of training rounds is determined
by m+n (i.e., 1/(n+m) of that of the underlying adversarial training method).
We focus on the accuracy, robustness, privacy, and runtime with the change of
adversarial/reverse-symmetry example ratio n/m. The performance comparison
is shown in the supplementary material table.

Observation 6. Given the number of training rounds, the accuracy increases
as the adversarial/reverse-symmetry example ratio decreases in most cases.

We focus on the metric Atest as in Observation 1. This observation applies to
most cases, except for PGD-based and Dist-based PINEAT-1/m on FMNIST.
We believe that when there are few adversarial examples, reverse-symmetry
examples may disturb the model boundary. We think this phenomenon is related
to the loss function. The loss function of Diff-based method contains the natural
loss (α = 1/2) while PGD-based and Dist-based methods only have the robust
loss (α = 0), thus the model boundary in the latter two methods is susceptible
to interference of reverse-symmetry examples’ bias when the example space is
small. In addition, most (58.3%) variants perform better than the underlying
adversarial training method and some variants are even close to the natural
training method, such as Dist-based PINEAT-2/3 on FMNIST and Diff-based
PINEAT-1/3 on CIFAR10.

Observation 7. Given the number of reverse-symmetry examples calculated in
a training round, the robustness decreases as the adversarial/reverse-symmetry
example ratio decreases in most cases.

We focus on the metric Rtest as in Observation 2. This observation applies to
most cases, except for four variants. In Dist-based PINEAT-1/2 and PINEAT-
1/3 on CIFAR10, the robustness of models does not fall but increases. Dist-
based adversarial examples are not of high quality, showing that robustness
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of model trained by the original Dist-based is much lower than the other two
original methods. Then, the random reverse-symmetry examples near the natu-
ral example maybe instead play the role of adversarial examples. In the PGD-
based PINEAT-1/2 and PINEAT-1/3 on FMNIST, the robustness of models also
increases. We believe that the PGD-based adversarial examples are too concen-
trated in specific area, and the reverse-symmetry examples hit possible adver-
sarial area that the PGD-based adversarial examples did not consider before. In
addition, most (64.4%) variants perform better than the underlying adversarial
training method.

Observation 8. Given the number of adversarial examples generated in a train-
ing round, the privacy becomes better as the adversarial/reverse-symmetry exam-
ple ratio decreases.

We focus on the metric PMAX as in Observation 3. This observation applies
to most cases, except for Dist-based PINEAT-1/4 on FMNIST. We believe that
the special case is related to the characteristics of adversarial examples generated
in Dist-based methods. The Dist-based methods tend to add noise to a small
number of pixels in the image and add extremely negligible noise on the remain-
ing pixels. In the Dist-based PINEAT-1/4 on FMNIST, the adversarial/reverse-
symmetry example ratio is very small and the multiple reverse-symmetry exam-
ples are very similar to the natural examples. That means the training process
is similar to natural training, but the privacy result is still better than that
of natural model. In addition, all variants perform better than the underlying
adversarial training method and most (55.9%) variants are even better than the
natural training method.

Observation 9. The runtime decreases as the adversarial/reverse-symmetry
example ratio decreases.

This observation can be inferred from Observation 6. In terms of runtime, our
methods are superior to the underlying adversarial training method.

6 Conclusion

In this paper, we propose a framework based on empirical adversarial training,
named PINEAT. With the design of reverse-symmetry examples, our framework
can eliminate the negative impact of adversarial training on the model privacy
while retaining its robustness advantage. Our experimental results show that
the basic framework and its variants are better than the traditional adversarial
training methods in terms of the overall performances.
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