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Device fingerprinting technologies are widely employed in smartphones. However, the features used in existing schemes may
bring the privacy disclosure problems because of their fixed and invariable nature (such as IMEI and OS version), or the draconian
of their experimental conditions may lead to a large reduction in practicality. Finding a new, secure, and effective smartphone
fingerprint is, however, a surprisingly challenging task due to the restrictions on technology and mobile phone manufacturers. To
tackle this challenge, we propose a battery-based fingerprinting method, named PowerPrint, which captures the feature of power
consumption rather than invariable information of the battery. Furthermore, power consumption information can be easily
obtained without strict conditions. We design an unsupervised learning-based algorithm to fingerprint the battery, which is
stimulated with different power consumption of tasks to improve the performance. We use 15 smartphones to evaluate the
performance of PowerPrint in both laboratory and public conditions. The experimental results indicate that battery fingerprint
can be efficiently used to identify smartphones with low overhead. At the same time, it will not bring privacy problems, since the
power consumption information is changing in real time.

1. Introduction

The rapid development of smartphones has made people’s
lives more convenient. However, it can also give unlawful
users a chance to make some wrongdoing. For example,
some illegal users may publish comments, pictures, or
videos that violate the law, and some may use multiple
devices for fraud. Therefore, we need to locate these
problems and protect the civilization of the network space.
We can use device fingerprinting technology to track the
devices, even to track the users. A device fingerprint is
information collected about a remote computing device for
the purpose of identification. Fingerprints can be used to
tully or partially identify individual users or devices even
when cookies are turned off. For example, ad networks and
web publishers could collect users’ online habits and other
information from the smartphones and further use this

information to generate device fingerprint to identify de-
vices [1-4].

Existing device fingerprinting methods can be divided
into two categories: browser fingerprinting and hardware
fingerprinting. Browser fingerprints, such as cookies and
browser history, have been widely used in the computer
systems to identify the devices [5]. Web analytic services also
collect basic web browser configuration information in an
effort to accurately measure real human web traffic and
discount various forms of click fraud for a long time. In the
ideal case, all client devices would have a different finger-
print that would never change. With those assumptions, it is
possible to uniquely distinguish all devices on the network
without the explicit consent of the users themselves.
However, the assumptions of uniqueness and immutability
are difficult to guarantee in practice. On the smartphones,
the browser fingerprint is even less efficient since the high
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system version and plug-in repetitive rate reduce the rec-
ognition accuracy significantly [6]. Moreover, the browser
fingerprinting may bring the privacy problems due to its
fixity. As the improvement of users’ privacy awareness,
many users have disabled the cookies and history in their
browsers, which has influenced the development of the
browser fingerprinting.

Hardware fingerprinting approaches identify devices via
the characteristics of hardware components [7]. On the
smartphones, the most common hardware that are used for
fingerprinting are the built-in sensors, such as accelerom-
eters, gyroscopes, microphones, and microspeakers. The
discrepancies of those sensors on manufacturing make them
having unique characteristics and can be captured in the
form of a fingerprint. Most importantly, the sensor data
information has always been changing. Thus, it does not
bring any privacy problems.

Unfortunately, existing sensor fingerprinting schemes
require certain conditions to capture the characteristics. For
example, the fingerprinting schemes employing a gyroscope,
accelerometer, and microphone, which are widely used in
smartphones, require the smartphone is either held in a
user’s hand or resting on a flat surface. More specifically,
measuring the offset and sensitivity of the gyroscope would
require subjecting the device to constant angular velocity
rotation at different speeds, and the microphone requires
users to make certain sound [8]. These methods are difficult
to carry out even in the laboratory. We will discuss the
limitations of the existing schemes further in Section 6.
Therefore, designing an effective hardware fingerprinting is
still an urgent challenge.

In this paper, we aim to design a method that can
identity the device with a high accuracy without revealing
the privacy information. To this end, we use the power
consumption of the smartphone battery to generate device
fingerprint, since capturing the changing data of the battery
does not require any authority and does not disclose any
privacy data. We find many differences in the design of
different devices and batteries, such as the CPU clock fre-
quency and battery capacity. When integrating these devi-
ations, we can capture the uniqueness of the power
consumption rate in performing specific tasks on different
devices. Moreover, we prove that the power consumption
rate is relatively stable on a smartphone, and the battery
durability is different even for the same phone model since
the usages are different between users. These differences can
be further extracted to unique device fingerprints. However,
there is a great challenge in this kind of fingerprinting, that
is, the performance of battery is affected by many factors,
such as environment, temperature, and service life.

To tackle this challenge, we propose a machine learning-
based approach to extract a large number of features from
the battery, whose accuracy is improved by performing
customized tasks at different times. The proposed method,
named PowerPrint, is evaluated from different aspects on a
wide variety of smartphone models and operating systems,
both the laboratories and nonlaboratories. According to our
experiments, generating a unique fingerprint only takes a
collecting session lasting for 25 seconds, and recognizing the
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device with the fingerprint can be carried out within about 3
seconds. Our contributions can be summarized as follows:

(1) We perform the first large-scale study of power
consumption rate of the smartphone batteries. We
show that the power consumption rate of the battery
is one of the most discriminating attributes.

(2) We present a new and efficient device fingerprinting
method to identify the devices, which utilizes the
power consumption rate of the battery.

(3) We explore a more secure way to identify a device
which uses the characteristics in variation to extract
the fingerprint features. In this way, the security
problems brought by the stationarity of fingerprints
can be eliminated.

This work is an extension of our conference version [9].
Compared with [9], we evaluate PowerPrint with a new
measure as we take the recall rate into consideration, so we
can make a more comprehensive and accurate evaluation.
We also analyze the principle of app power statistics.
Moreover, we analyze the impact of the user’s operations on
the final recognition performance when the device is being
identified, which has further explained the reason why we
has not used apps in the app store as a power collection
object. The final results show that the battery fingerprint can
well be used to identify smartphones even if we re-evaluate
the whole scheme.

Roadmap. The remainder of this paper is organized as
follows. We present the application scenarios in Section 2.
Section 3 shows how the battery works and why we can
fingerprint it successfully. In Section 4, we describe the
different temporal and spectral features selected in our
experiments and how we fingerprint the battery, along with
the classification algorithms. We present our fingerprinting
results and evaluate the features we selected in Section 5.
We present the related work about device fingerprint in
Section 6. Section 7 discusses some limitations of our
approach and a controversial problem. Finally, we conclude
in Section 8.

2. Application Scenarios

In this section, we introduce several interesting application
scenarios about device fingerprinting. There are also many
other scenarios where device fingerprinting can be used.

Considering the first situation: many shopping malls
have their own applications or official accounts, which are
used for popularizing themselves. Obtaining users’ con-
sumer habits is very important to increase the turnover for
the malls. With a mall getting a user’s consumption record,
the mall can recommend to the user some discount infor-
mation and shopping guide information of some stores
which are more likely to buy. In most cases, the devices and
users are one to one correspondence, which means that
identifying devices is identifying users. Our work can help
identify a device without user’s login or any permissions,
which can perform well in this scenario.



Security and Communication Networks

Perhaps, an even more relevant scenario is user blocking.
Websites and forums need to block some illegal user ac-
counts regularly. However, once the user re-registers with
another account, this user cannot be detected easily. Our
methods can be used in this situation. The websites and
forums only need to collect information about the device
used by the illegal user. Once the illegal user re-registers on
the websites on the same devices even if he/she employs
various anonymity technologies such as IP hiding, the
managers of the websites can identify and block the user.
Similarly, such fingerprints are useful in the detection and
prevention of online identity theft and credit card fraud. In
practice, device fingerprints can be used to predict the
likelihood of users who may be deceived based on their
signal feature, before they have been deceived [10], which
can be meaningful for many users. For different application
scenarios, PowerPrint can be used as a plug-in for app
developers to identify smartphones.

3. Background of Battery Fingerprint

In this section, we briefly take a closer look at the back-
ground of battery; this will provide an understanding of how
they can be used to uniquely fingerprinting smartphones. In
this paper, we collect the power consumption information of
a specified app, and the details of the app will be introduced
in the next section. We choose to fingerprinting the power
on an app rather than the smartphone as that the overall
power consumption of smartphones is easily affected by
many factors, which will result in the unstable recognition
rate of the smartphone. For example, users may play games
the whole day in the weekend, which is very power con-
suming. After that, it may be regular life away from the game
for a whole week. There will be many differences in the
power consumption information in these two states. If just
fingerprinting a specified app (we default that the user’s
habit of using this app is relatively stable), the power
consumption information will be relatively stable, which can
reflect the characteristics of smartphone battery and the
characteristics of other components in the smartphone.

It has been widely known that the smartphone is con-
sisted of many components, including CPU, WIFI, GPS, and
so on. Therefore, the total power consumption of Android
app is the sum of the total consumption of components
involved in the running process of app. Assuming the op-
eration of app resulted in CPU operation, if t and w rep-
resent time and power consumption per unit time, then
power consumption for CPU in app (W) can be computed
as, W = w # t. In physics, it is universal to use voltage value
(U) and current value (I) to calculate the power con-
sumption information, W = U = I * t. The voltage value is
constant in the smartphone, so the power consumption can
be computed through electric capacity (Q, unit: mAh),
Q=1=t. We use electric capacity to represent the power
consumption information in this paper.

The next brief introduction of Android is how to store
and read app power consumption information, which is
explained in detail in the official documents [11]. First, the
class PowerUsageSummary.java gets the file (named as

betterystats.bin) through the system service (batteryinfo).
Android engineers have already declared that the file is used
to maintain low-level data about the kinds of operations the
device and apps are performing between battery changes. It
is used to compute the battery usage shown in the “Battery
use” Ul in settings. Moreover, the file has no impact on the
battery life and current battery level shown to the user.
Android component current information is stored in power-
profilexml. Meanwhile, the components’ power consump-
tion should be related to the specific hardware so that every
OEM vendor should have its own power-profile.xml.
Smartphones are equipped with hardwares of different
vendors, as we have mentioned before, and the difference
will make a difference of smartphones’ power consumption.
In Android 5 and earlier versions, the object of power
statistics is not the app, but UID. The relationship between UID
and an app is that, if 2 app signatures are the same as
sharedUserld, they have the same UID at run time. That is to
say, what processAppUsage has counted may be the power
consumption information of multiple apps. For ordinary apps,
most of them have their own exclusive UID, but two Android
system applications may have the same UID. Therefore, the
power consumption of app is equal to the sum of power
consumption of every Process of UID, wake lock power
consumption, data traffic consumption, WIFI power con-
sumption, and other sensor power consumption. We can see
that the steps are relatively cumbersome. However, there is
good news that the total power consumption could be obtained
easily by adding all the UID power consumption under the app
after Android 5. In addition to the effects of these components
on power consumption, it is also affected by environmental
factors, the aging of the battery, the usage habits of the users,
and the list of installation and application (Section 5 will show
how we deal with these environmental noises). All of these once
again confirm the thesis we have mentioned before, even the
same type of smartphones may show different battery features,
which finally can be used to identify smartphones uniquely.

4. Features Selection and
Classification Algorithms

In this section, we describe the design of PowerPrint, which
is based on the power consumption rate of smartphones’
batteries. In PowerPrint, we have designed four fundamental
steps: (1) data collection; (2) data processing; (3) feature
extraction and selection; and (4) fingerprints matching.
Figure 1 introduces these steps of our design on how to
identify the devices briefly, which has shown us that data
collected from Jack’s phone in different time can be
extracted to fingerprints and be matched each other in the
servers successfully.

4.1. Data Collection. To collect more features and identify a
smartphone accurately, we design a number of tasks of
different power consumption rates and characteristic, such
as big number computing, large file reading, large file
writing, and broadcast transceiver. These tasks are easy to
implement, and the power consumption rates are small but
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FIGURE 1: The project design of data processing, fingerprints extracting, and fingerprints matching. The data sources refer to smartphones’

batteries.

quite different. The power consumption rates’ order of these
tasks from small to large is broadcast transceiver, large file
reading, large file writing, and big number computing. As
different tasks may exhibit different features, it is necessary
to combine different tasks in a round. When we implement
the tasks in the terminal, we manually assign the tasks by the
power consumption rate. In our design, the task which
consumes less energy is performed first followed by the task
which consumes more energy. The different tasks are per-
formed by turn, and the cycle is about 5 seconds. When the
tasks are performed, we collect the initial power con-
sumption trend of the smartphones.

Moreover, we design two tools to collect data in
smartphones. As our work follows the work of Zhang et al.
[12], we use an altered PowerTutor (named APower) as the
tool to collect the data of power consumption. PowerTutor is
an application for Google phones that displays the power
consumption by major system components such as the CPU,
network interface, display, GPS receiver, and different ap-
plications. It allows software developers to observe the impact
of design changes on the power efficiency. Users can also use
this application to determine how their actions impact battery
life [13]. Besides, our experiment has confirmed that the tool
works well and the result is accurate even in the other models
of smartphones after we improve it. Moreover, we design an
application ATest to perform the different tasks we design in
this section. We will explain the reason why we choose ATest
rather than the apps in the app store as the power collection
object in our experiments. ATest afpownd APower can work
well on Android 4.1-6.0. Therefore, APower collects the data
generated from ATest; Figure 2 shows how they work. All
subsequent experiments are conducted on this basis.

4.2. Data Processing. We need to process the data with
smoothing to eliminate some noise interferences after we
collect the original data. At the same time, it is also necessary
to preserve the characteristics of the original data. In this
paper, we choose the smooth function in MATLAB. There

are several different smoothing methods, such as the moving
average method, the Lowess method, the Loess method, and
the Savitzky—Golay method. After comparing the smooth-
ness and the distortion among these methods, we finally
choose the Lowess method (local regression using weighted
linear least squares and a 2nd degree polynomial model) to
smooth the data curves. The method we chose is very good to
remove the noise and to retain the data features to make the
necessary preparation for the next step of feature extraction.

4.3. Feature Extraction and Selection. There are several
possible strategies to extract relevant features from collected
data. We design a simple tool based on mirtoolbox (a
popular feature extraction library) and use it to extract
teatures of the battery data stream [14]. We have extracted 25
features in both time and frequency domains finally.

One may think that using all features to identify the
device is the optimal strategy. However, including too many
features may worsen the performance in practice, due to
their varying accuracies. Therefore, we explore all the fea-
tures and select a subset of the features to optimize our
fingerprinting accuracy. We use the FEAST toolbox [15] and
utilized the joint mutual information criterion (known for
providing the best balance around accuracy, stability, and
flexibility with small data samples [16]) for ranking the
features. We find that the best device identification effect can
be achieved when the first 12 of all the features given by the
tool are selected. As a result, we select the top 7 time domain
features (see in Table 1) and top 5 frequency domain features
(see in Table 2) to construct the fingerprints. We present the
performance of the features in Section 5.3.

To show the validity of the features we selected, we have
selected five devices (abbreviated as A, B, C, D, and E) to
show the distinction of the spectral kurtosis, sum, stand-
deviation, and maximum between them. The results are
presented in Figure 3. We can see that these features are
much differentiated, as the performance of different features
on different devices is different. The device A and device B
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TaBLE 1: List of time domain features.
Feature name Description
Sum The whole power consumption the device at certain timestamps
Mean The arithmetic mean of the power consumption at different timestamps
Max Maximum power consumption
StandDeviation Standard deviation of the power consumption
Kurtosisl Measure of the spikiness of a distribution
Valleyl Measure of the flatness of a distribution
Valley2 Measure of the flatness of a distribution

TaBLE 2: List of frequency domain features.

Feature name

Description

Spec. Kurtosis
Spec. Dev
Spec. RMS
Spec. Centroid
Flatness

Measure of the flatness or spikiness of a distribution relative to a normal distribution
Standard deviation of the signal strength of a spectrum
Spectral root of the arithmetic mean of the squares at various frequencies
Represents the center of mass of a spectral power distribution
Measures how energy is spread across the spectrum

are two devices which are similar in models, the system
configuration, and installation software list, so the dis-
crimination is lower than other devices. But, there is a
certain degree of discrimination between the two devices,
especially when we consider in combination with other
characteristics.

4.4. Fingerprint Matching. Once the features have been
extracted, we use unsupervised learning to classify smart-
phone battery. As in other supervised learning methods, our
classifier consists of a training set and testing set. The
training set is derived from the set of the specified device,
and the testing set is derived from different devices. In the
training set, in order to create a classifier, the learning al-
gorithm may learn the sample dataset by matching some
parameters. Moreover, the classifier predicts the most
probable class for a given feature vector in the testing set.
There are different classifiers as follows: Support Vector
Machine (SVM), Naive-Bayes classifier, Multiclass Decision

Tree, k-Nearest Neighbor (k-NN), Quadratic Discriminant
Analysis classifier, and Bagged Decision Trees. We observe
that SimpleKMeans outperforms the other classifiers after a
comprehensive comparison of all the methods.

5. Performance Evaluation

In this section, we first describe our performance metrics
(Section 5.1) and experimental preparation (Section 5.2).
We, then, explore features to determine the minimal subset
of features required to obtain high classification accuracy
and evaluate the impact of some factors on the fingerprint
accuracy at the remaining part of this section.

The key questions we have investigated and the corre-
sponding findings are summarized as follows:

(1) How long will it take to generate a fingerprint? We
find that 25 seconds of task execution is sufficient to
model a device’s fingerprint, which is shown in
Figure 4.
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(2) Are the fingerprints effective only at the fastest (3) Do the users need to be aware of the power con-
sampling rate? No, even we collect the data at a lower sumption rate when they use the devices? No, our
sampling rate, the device can also show a certain fingerprinting program does not seriously affect the
degree of distinction. Table 3 will prove the smartphone battery life, which can be seen in the end

conclusion. of this section. Moreover, the program is not always
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carried out, so the impact on the user experience can
be ignored.

(4) Should we always perform our tasks in the back-
ground? Not needed. Collecting data in a short time
can extract the eigenvalues to perform identification
accurately.

We now begin by describing the performance metrics
used for evaluation.

5.1. Performance Metrics. In order to measure the perfor-
mance of our fingerprinting techniques throughout this
work, we calculate the standard classification metrics of
precision, recall, and F-score in our evaluation [17]. We first
compute the true positive (TP) and the true negative (TN)
rate, which both mean the number of traces from the class
that are classified correctly. Similarly, we compute the false
positive (FP) and false negative (FN) rate as the number of
wrongly accepted and wrongly rejected traces. Assuming
there are n classes, for each class i (1 <i <), we compute TP,
TN;, FP;, and FN;, respectively. To evaluate the overall
performance of the multiclass classification in the classifi-
cation in the presence of untrained devices, we compute the
precision Pr;, recall Re;, and the F-score F; for each class
using the following equations:

. TP,
ri=————
'~ TP, 1 FP,
TP,
Re; = —1— 1
% TP, + FN, (1)
_ 2xPr; X Re;
T Pr,+Re

The F-score is the harmonic mean of precision and recall,
and it provides a good measure of the overall classification
performance, since precision and recall represent a trade-oft:
a more conservative classifier that rejects more instances will
have higher precision but lower recall, and vice versa. To
obtain the overall performance of the system, we use the
classification metrics of average precision AvgPr, average
recall AvgRe, and average F-score AvgF:

n
", Pr.
AvgPr = Zioi Pri al
n
n
" Re.
AvgRe = m, (2)
n
2 x AvgPr x AvgRe
AvgF =
AvgPr + AvgRe

5.2. Experimental Preparation. Considering that smart-
phones take up for a half of all global web pages served in
2017, especially in Asia, smartphones have occupied 60% of
the total web traffic [18]. We perform our experiments on 10
phones of 9 different models in different periods. The dif-
ferent phones and the system versions are shown in Table 4.

TaBLE 3: The impact of the experiment on the power consumption
and users’ experience of different devices.

. Sampling  Power  Proportion
Models Capacity frequency consumed (%)
1 13110 0.14001
Galaxy ON5 9360000 2 13400 0.14320
1 10223 0.09470
Rongyao 5C 10800000 ) 12000 011110
. 1 11603 0.10070
Xperia Z2 11520000 ) 11350 0.09850
1 9471 0.08770
Lenovo K3 Note 10800000 5 10412 0.09640
Samsung GT- 1 14111 0.09800
P3110 4400000 2 16011 0.11120
TaBLE 4: Types of phones used.
Model Versions Quantity
HUAWEI RONGYAO 5C Android 6.0 2
Samsung galaxy ON5 Android 5.1 1
SONY Xperia T2 Ultra Android 4.3 1
SONY Xperia Z2 Android 4.4.2 1
Lenovo K3 Note Android 5.0 1
Samsung GT-P3110 Android 4.4.4 2
Xiaomi2 MIUI V4 1
Xiaomi4 MIUI 6 1

The models of these smartphones vary from Android 4.1 to
Android 6.0. For training and testing the classifiers, we
randomly split the dataset in the way that 95% of the data
collected from each device goes to the training set and the
remaining 5% goes to the test set. To prevent any bias in the
selection of the training and testing set, we randomize the
training and testing set several times and report the average
F-score. For analyzing and matching fingerprints, we use a
desktop machine with an Intel i3-4160 3.6 GHz processor
with 8 GB RAM. The results show that the average time
required to match a new fingerprint and identify a device is
within 3 seconds.

Next, we consider several factors that may affect our ability
to model fingerprints and classify devices. First, when the
battery is low, the power consumption rate would be signifi-
cantly higher. In order to maintain accuracy, we do not per-
form any recognition algorithms when the battery is less than
30%, and there is a detailed description about why we choose
the level of 30% in Section 5.5. Second, when the device is
charging, the battery is unstable, and we also do not perform
recognition algorithms as the result may be inaccurate. Finally,
our experiments are carried out at a temperature of 21 degrees
in a laboratory environment, so the effect of environmental
temperature on the accuracy of the results is insignificant.

Moreover, considering the other influence factors, the
power consumption rate of the old batteries is different from
new batteries. As the service time of the battery can be a
characteristic to identify different devices, we do not con-
sider the impact of battery loss. Certainly, this means that the
battery can be used normally. Finally, as the noises come
from other applications, we take measures similar to the



battery loss. Because even for the same device, if the ap-
plication runs in different time, the power consumption is
different. Besides, what we collect is the rate of power
consumption, not merely the overall power consumption.
We can think of it in this way: the power consumption of
other applications is also one of the fingerprint elements for
each device, so it seems that there is no need to distinguish
these noise data.

5.3. Feature Evaluation. In the first phase of the experiment,
we conducted a cluster analysis of our 10 smartphones in the
laboratory to show the validity of the features we selected in
Section 4.3. The classification results are shown in Figure 5,
which shows the relationship among the accuracy of the
classification, the feature quantity, and the sample size we
selected.

We can see that, with the increase of the number of
extracted features, the average F-score of the device iden-
tification changes at the same time. When the number of
features increases to 12, the balance between the best rate of
precision and the recall rate is reached, which shows that
different devices can be distinguished at a high accuracy rate.
When we increase the number of features, the curve no
longer keeps growth. On the contrary, there may be a certain
degree of decline for the curve. Therefore, we select the top
12 features to generate the fingerprints in order to get the
best balance of the precision and recall. Moreover, we use
this subset of features in all our later evaluations. In addition,
we can see that the larger the sample size, the higher the
accuracy of device identification in Figure 5, so we increase
our sample set as much as possible. The relationship between
the sample size and the accuracy of the device identification
also prove the effectiveness of our program at a certain
extend.

5.4. Precision. In this section, we conduct experiments with
10 devices mentioned in our experimental preparation. In
order to ensure the stability of the training values and the
effectiveness of the fingerprint, we only collect data when the
battery capacity is above 30%; there is a detail description
about why we choose the level of 30% in Section 5.5. The
final average classification results are shown in Figure 6.
We test each device with 12 samples after the training
process. The classification result for each device is shown in
Figure 6. If points of the same color fall on the horizontal line
that corresponds to them, it means that the smartphones
that correspond to them are correctly classified. We can see
that most points fall on the same horizontal line they cor-
respond to, which means that most devices can be classified
accurately. One of the Samsung GT-P3110 has been clas-
sified correctly for 8 times, and another Samsung GT-P3110
has been classified correctly for 10 times. Since the two
Samsung tablets are totally the same in models, software
configurations, and the service life, the classification result is
not as good as that of other devices. Meanwhile, there are
also two HUAWEI RONGYAO 5C, but we can see that the
two devices’ performances are not bad in the result. There
are many factors which can impact the final performance of
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FIGURE 6: Exploring the overall performance of the classification.

the four devices, just as we have mentioned in Section 1; the
service life of the devices and the number of kinds of
software installed also have an impact on the results. So, even
for the same type of smartphones, the recognition effect is
not bad.

5.5. Impact of Batteries’ Current Power. We will give an
answer at what have been mentioned earlier to make sure
that the current power is not less than 30% in this section.
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We explore the impact of smartphone current power on
fingerprinting effectiveness, which is inseparable with the
choice of the right moment to start data collecting. Data
acquisition is performed at different power levels (10%, 20%,
30%, 40%, 50%, 60%, 70%, and 80%, respectively), in order
to test the effect of different power levels on the accuracy of
the test values. Meanwhile, both our training set and test set
are selected under the same power levels.

We show the relationship between batteries’ current
power and the accuracy of the test values in Figure 7. The
result shows that the accuracy can reach more than 86% even
when the power level is changed. We can also notice that as
the current power increased, the accuracy changed from 75%
to more than 86%, and when the current power is greater
than 30%, the accuracy remained stably around 86%. Thus,
we can draw a conclusion that the batteries’ current power
does have an impact on the accuracy of the classification
performance. Besides, when the current power consumption
is greater than 30% while carrying out an experiment, the
impact of the current power on the classification is almost
negligible. That is why we need to ensure the current power
to be greater than 30% when we carry out all the
experiments.

5.6. Scalability. The accessible amount of data in a labora-
tory environment are limited, and it is difficult to test a
system with a very large set of devices. Thus, to verify the
effectiveness of the fingerprints, we conduct an experiment
where we increase the number of devices outside the lab-
oratory environment. For this purpose, we called the other
five users’ devices to carry out our experiment. We have not
called for more devices because the process of collecting data
is a little time consuming. With their assistance, we collect
the other more than 150 data sets from the five devices.
However, some of the volunteers have not followed the steps
we request, so we only keep those following the steps, and
finally, we get 100 data sets.

The results in Figure 8 show that the fingerprints col-
lected from these devices are valid, and these devices can be
identified correctly at most times. We can see that the 12
tests have been classified quite precisely among all the 5
smartphones. This figure shows that the system performance
does not change much for a larger set. Besides, these results
provide encouraging signs that our features selection and
classification algorithm is likely scalable to a large number of
devices.

5.7. Impact of the Amount of Tasks. In this section, we
conduct an experiment to study how the amount of the tasks
impacted on the classification performance. We designed
our experiment as we change the tasks’ power consumption
gradually, which is depending on the amount of the tasks.
We compare the performance of different tasks in different
devices; then, it is natural to raise the following three
questions while displaying our experiment:

(1) Can the power consumption be the same when
certain task is carried out in different devices?

70

Effectiveness of the fingerprints (%)

65 T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100
Current power of the smartphones (%)
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—#- Rongyao 5C
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FIGURE 7: The impact of smartphone current power on finger-
printing effectiveness.
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(2) Does the power consumption change obviously
when the same task is carried out in different
devices?

(3) How about fingerprinting a device without any
variation about the amount of tasks?

Next, we do a research about the impact of the amount of
tasks and try to answer these questions. First, we perform the
task which is in variation on the devices, and this experiment
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confirms the power consumption is significantly different
when the different task is conducted in different devices.
Moreover, there is slight difference even for the same task in
two devices which is of the same model. Second, we perform
experiments keeping devices performing the same tasks, and
the results show that they can be discriminated to some
extent without any stimulation.

5.7.1. Fingerprinting with Tasks in Variation. In this setup,
we design four different tasks in 20, such as big number
computing, large file reading, large file writing, broadcast
transceiver, and other tasks of different power consumption.
Each task is executed for 5s. Moreover, we fingerprint the
devices to research the result with stimulation. The accuracy
of this setup is shown in Figure 4(a).

Figure 4 shows that the relationship around the accu-
racy, the sampling time, and the sampling rate. As shown in
the figure, we give the result of two sampling rates, once or
twice in a second. We can see the sampling rate has little
effect on the accuracy, as the height of the red and blue
cylinders remains nearly flat. We can see clearly that, for the
fingerprints with stimulation, the average F-score can be
stable at 85% after the sampling time reaches 25 s. The most
important reason is that, the number of eigenvalues
extracted when the amount of tasks in variation is more
than which are extracted when the amount of tasks is stable,
which can directly affect the performance of the recogni-
tion. Besides, it is enough for the sampling time to collect
the data and generate discriminating fingerprints within 25
seconds.

5.7.2. Fingerprinting with Tasks in Stable. To understand if
the fingerprints can be extracted without any stimulation, we
conduct an experiment where we keep devices performing
the same tasks. The accuracy of this setup is shown in
Figure 4(b). We can see that when the amount of the task
remains stable, the accuracy of recognition is much lower.
After the sampling time reaches 20 s, the average F-score just
remains at around 72%, which is because the number of
eigenvalues extracted is less than the normal quantity when
the devices perform the same tasks all the time. When the
sampling time increases gradually, the accuracy rate keeps
increasing. From the diagram, we can see that it can
maintain at around 74% ultimately, which is discriminated
to some extent.

5.8. Impact on Users’ Experience. It is inevitable for the
programs which is relevant to the user to consider the impact
of the program on users’ experience. In this section, we use
five devices to conduct the impact on the power con-
sumption or users’ experience, namely, Samsung Galaxy
ONS5, Huawei Rongyao 5C, Sony Xperia Z2, Lenovo K3
Note, and Samsung GT-P3110. This experiment is carried
out in the laboratory. Besides, we assume that the phone is
fully charged. We compute the total power consumption
before and after each experiment (we sampled 10 times and
calculated the average power consumption of the 10 time
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tests) and, then, compare the effects of different sampling
rates on the power consumption.

Table 3 shows us the impact on the different devices’
power consumption of this round. We can see the power
consumption of the different smartphones in different
sampling rates, as well as the proportion of the power
consumption by our experiment and the total capacity
detailed. The amount of power consumption during a
sampling process is no more than 0.2% of the total power in
all the five devices. Different sampling frequencies also have
a small impact on the power consumption amount. So, we
can draw such a conclusion that the impact of our exper-
iments on the devices itself and users’ experience is
negligible.

5.9. Impact of Users’ Behavior. Previous experiments focus
on the fingerprinting performance in daily usage. That is, the
fingerprint is computed once Apower is run without closing
background apps. In this section, we discuss how the users’
behavior (i.e., the foreground app) impacted on the iden-
tification performance of PowerPrint. We carry out the
device identification with different behaviors. Among all the
users’ behaviors, we only consider a few simple and common
users’ behaviors, such as playing games, web browsing,
making phone calls, and SMS. Different behaviors may have
different impacts on power consumption information, so the
behaviors may influence on the final identification accuracy.
Before we begin this experiment, we clean up the back-
ground process in advance to eliminate the interference
factors, and we assume that the subsequent tasks running in
the background have little impact on power consumption in
practice.

Figure 9 has showed us the impact of users’ behavior on
the final performance. We can see that the final performance
is obviously influenced by the user’s behavior. The final
performance varies greatly from 45% to 86% when identi-
tying the devices with different users’ behavior. The iden-
tification accuracy is the worst when playing games and the
best when sending messages. Furthermore, the performance
is unstable when playing games and is relatively stable when
other behaviors are performed.

In this experiment, we also consider the impact of the
network; therefore, we carried out two groups of experi-
ments. SMS and phone calls do not require the support of
the network environment, but playing games and browsing
the web page must be carried out in a network environment.
In the picture, the two curves of the same color are the
performance of the same user’s behavior under different
network environments (the network and no-network en-
vironment). We can see that, for the same user behavior, the
device identification accuracy is better in the absence of the
network environment. Therefore, we conclude that some
behavior can result in a significant reduction in the final
performance, and the effect on the performance is not
negligible. Moreover, the network environment can also not
be negligible for the effect of device recognition. This is why
we used the app designed by ourselves as a source of data,
which do not require the network environment.
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FiGure 9: The impact of users’ behavior on the identification
performance.

To summarize, our evaluation using 15 smartphones and
tablets shows that they can be identified robustly leveraging
the fingerprints of the batteries. The features we have chosen
have a good performance, while others such as current
power and the amount of task have little effect on the ac-
curacy. Moreover, while a further study is needed to increase
the number of devices to confirm the scalability of our
findings, to the best of our knowledge, this can be used to
identify the device effectively.

6. Related Work

As everyone knows that, human fingerprints can be used to
certify a person well through their uniqueness. Just as the
human fingerprints, many things have features that can
identify themselves, such as the devices, OS, and com-
modities. The features which can identify themselves can be
called as fingerprints (device fingerprint, OS fingerprint, and
commodity fingerprint). We mainly introduce two effective
and widely used technologies in identifying mobile and
computer technologies: browser fingerprinting and hard-
ware fingerprinting.

6.1. Browser Fingerprinting. Acar has identified users suc-
cessfully by some other browser techniques in 2013, such as
JavaScript-based, extension-based, and header-based.
Moreover, it is the first study about the adoption of browser
fingerprinting on the web [19]. Wang also identified a user’s
web activity by leveraging packet sequence information [20].
Similarly, Goethem used the cross-site resource to infer the
size of an external package based on the loading time of the
web page on the browser side [21, 22]. OS fingerprint is one
of the most widely studied fields in browser fingerprints [23].

Browser fingerprints include not only these but also
different protocols used in different levels of the OSI model
which may also be used as fingerprints to identify operating
systems and devices. They rely upon precise classification of
such factors as the client’s TCP/IP configuration, OS fin-
gerprint, and wireless setting. In normal operation, various
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network protocols transmit or broadcast packets or headers
from which one may infer client configuration parameters.
For example, Franklin developed a technique that accurately
and efficiently identifies a wireless device that employs IEEE
802.11 networking [24], and Zuo proposed a fingerprinting
method based on the communication protocol between a
Bluetooth low-energy device and its companion mobile app
[25].

However, collection of device fingerprints from web
clients relies on the availability of JavaScript or similar
client-side scripting language for the harvesting of a suitably
large number of parameters. The client-side scripting will be
limited, if users use privacy software and browser extensions
which block ads and trackers. Moreover, browser finger-
printing was limited to single browsers. If a user switches
browsers in a device regularly, browser fingerprint cannot be
used to link the user to these browsers. As each distinct client
and OS has distinct internal parameters, one may change the
device fingerprint by simply running a different browser on
the same device. In 2017, Cao put forward a cross browser
fingerprinting method, which allows tracking of a user
across multiple browsers on the same device [26]. None-
theless, these techniques for identifying smartphones are not
enough and do not work well in the smartphone because the
plug-ins in browsers of the smartphones are removed
mostly. Furthermore, the fonts are always the same, so the
accuracy to identify a smartphone based on these techniques
is quite low [6].

6.2. Hardware Fingerprinting. Eventually, hardware finger-
printing appears as an efficient method to identify devices,
which can be combined with webGL and canvas element to
perform a higher recognition rate. Sensors are an important
part of smartphone hardware, and smartphones are
equipped with many motion sensors. Naturally, researchers
found that many sensors can be used to extract fingerprints
to identify the device. Dey considers using accelerometers to
generate fingerprints to identify the devices [27]. He has
confirmed that the fingerprints arising from hardware im-
perfections during the sensor manufacturing process cause
every sensor chip to respond differently to the same motion
stimulus. These fingerprints can be exploited for identifying
devices. Besides, mobile sensors such as a gyroscope, ac-
celerometer, and magnetometer are also useful for inferring
users’ routes and locations [1]. Narain collects information
from these sensors, such as angles, curvatures, heading,
accelerations, and timestamps. Then, he infers a rough route
and compares with the public map to get the user’s motion
trail. Zhang designed a fingerprinting method based on
sensor calibration, which requires only the access to the
sensor output [28].

In addition to the common sensors, there are some other
hardware components in smartphones which can be used to
identify devices. Das and Zhou have confirmed that
smartphones’ microphones and speakers can be used to
identify a device successfully [29, 30]. Kohno introduced the
technology that uses clock skews to fingerprinting a physical
device [31]. Then, Polcak validated Kohno’s technology
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again in 2014, which shows that the method is suitable for
the computer identification [32]. Identifying a device
through these hardware does have a good performance.
However, as we have mentioned in Section 1, their imple-
mentation process has many restrictions. Users need to do
some specific operations to ensure the final accuracy. To
avoid user operations, Sanchez-Rola designed a time-based
approach, which distinguishes devices via observing the
execution time of specific functions [33]. Cheng employed
the magnetic induction signals emitted from the CPU
module to fingerprint devices, which needs dedicated
magnetic sensor [34].

In all the existing work, Olejnik’s study is the most
similar to ours. Olejnik et al. generated the battery finger-
printing based on the HTMLS5 Battery Status API to identify
users [35]. They compare the power consumption infor-
mation during the user’s twice visiting in a short time and,
then, use the information to identify users. However, his
research requires quite harsh conditions. First, the identify
progress works well only on Firefox browser, and the ac-
curacy of the identifying is lower in other browsers. Second,
the methods do not work well after the standardization of
the Firefox browser. Moreover, it also requires users to log in
a website repeatedly after a few seconds; only in this way it
can perform a high accuracy, which is difficult to achieve
outside the laboratories.

We also identify the devices based on the smartphone
battery. Most importantly, our experiment do not require
any conditions except for that the current power need to be
higher than 30%, in order to ensure a higher accuracy, our
methods is easier to implement, and the accuracy of our
identification is also quite high.

7. Limitations and Discussion

Our work is progressed mainly on Android 4.0-6.0. We have
not considered other Android versions for the following
three reasons. First, the total number of devices in the
laboratory is very limited. Second, the permission is re-
stricted after Android 6.0. Finally, Google’s market share
report on Android version in December 2017 showed the
user group of Android 4.0-6.0 accounting for 54.15% in all
the Android users [36]. Therefore, our experimental data are
convincing because that the user group we faced is huge.

In the future work, we will design an application plug-in
to identify the device based on the battery information and
use this method to identify the users rather than just the
devices. Another direction of our work is to explore the
relationship between different apps and power consumption
rate.

Let us consider a long and controversial problem, how
we define privacy and how to balance the relationship be-
tween privacy and convenience. As consumers and their
advocacy groups may consider concealed tracking of users to
be a violation of user privacy, while computer security ex-
perts may consider the ease of bulk parameter extraction to
be a browser security hole, and web publisher may consider
the collection of users’ Internet habits information as a
convenience and better user experience for users. Therefore,
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it is important to find a proper balance between privacy and
convenience. In this paper, we are committed to finding this
balance, which uses the power consumption information to
protect user privacy and guarantee the accuracy of device
identification to provide better user services.

8. Conclusions

We have presented a new approach for mobile device
identification which allows devices to be recognized without
any login operation and authorization. Our approach ex-
tracts features from smartphones’ power consumption to
identify the devices. When selecting our power consumption
research objects, we abandoned the various applications in
the application store, using our own simple and lightweight
application as to remove some interference. At the same
time, we use different power consumption tasks to collect
more features. Then, we select several kinds of characteristics
in variation in both time domain and frequency domain by
feature selection algorithm. Moreover, we employ the ma-
chine learning algorithm to classify the devices. The results
on 10 mobile devices, including 2 tablets, offer evidences that
such fingerprints exist, and they are well equipped for device
identification. While a conclusive result is needed to be
confirmed with plentiful experiment outside the laborato-
ries, we believe that our findings are still an important step
for sensor fingerprinting.

Data Availability

The power consumption data used to support the findings of
this study are included within the supplementary infor-
mation file.
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