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Optimal Location Privacy Preserving and Service
Quality Guaranteed Task Allocation in
Vehicle-Based Crowdsensing Networks
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Abstract— With increasing popularity of related applications of
mobile crowdsensing, especially in the field of Internet of Vehicles
(IoV), task allocation has attracted wide attention. How to select
appropriate participants is a key problem in vehicle-based crowd-
sensing networks. Some traditional methods choose participants
based on minimizing distance, which requires participants to
submit their current locations. In this case, participants’ location
privacy is violated, which influences disclosure of participants’
sensitive information. Many privacy preserving task allocation
mechanisms have been proposed to encourage users to participate
in mobile crowdsensing. However, most of them assume that
different participants’ task completion quality is the same, which
is not reasonable in reality. In this paper, we propose an optimal
location privacy preserving and service quality guaranteed task
allocation in vehicle-based crowdsensing networks. Specifically,
we utilize differential privacy to preserve participants’ location
privacy, where every participant can submit the obfuscated
location to the platform instead of the real one. Based on the
obfuscated locations, we design an optimal problem to minimize
the moving distance and maximize the task completion quality
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simultaneously. In order to solve this problem, we decompose
it into two linear optimization problems. We conduct extensive
experiments to demonstrate the effectiveness of our proposed
mechanism.

Index Terms— Location privacy preserving, mobile crowdsens-
ing, service quality, task allocation, vehicular network.

I. INTRODUCTION

W ITH continuous development of crowdsensing and the
tendency of various types and functions of sensors

in mobile devices [1], [2], many tasks can be assigned to
participants (i.e., people who participate in the task) [3]. Par-
ticipants use their mobile devices to collect the data required
by the task and finally feedback the data [4], [5]. For example,
when determining the noise situation in a certain area, if noise
detection devices are deployed directly, the task is too costly
and requires too much time [6].

However, the use of mobile crowdsensing can assign the
task to participants in the specific area. Only the corresponding
incentive mechanism needs to be set to reward these partic-
ipants [7], [8], which has great advantages in both cost and
delay compared with traditional schemes [9].

Mobile crowdsensing users’ moving speed is low, which
leads to a limited sensing range. However, some tasks need
the participants move a long distance to execute sensing tasks,
such as in an air pollution sensing task when the executed
location is at isolated areas with few people around. In such a
situation, the task is difficult to recruit participants even though
the task is important and the reward is high. One solution is
utilizing vehicular crowdsensing [10], in which vehicles can
execute tasks with their mobile phones [11], [12].

However, after the release of a task, how to select appropri-
ate participants to perform the task, or task assignment, is a
key issue. This strongly influences the completion rate and
incentive mechanism of the task [13]. The traditional solution
to the task assignment problem is to select the participant
closest to the task location to perform the task according
to the locations submitted by participants and the location
required for task execution. As for such a task assignment
process, it is easy to cause leakage of participants’ location
privacy [14], [15]. An attacker may infer the participant’s
information, such as their work place, home address, hobbies,
and other variables, which would decrease the interest of
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participants in task execution, thus the number of participants
would decrease, and then effective assignment of tasks would
be influenced [16], [17].

In order to encourage mobile crowdsensing users (i.e.,
vehicles in this paper) to join in the crowdsensing platform and
execute tasks, location privacy must be satisfied [18], [19]. In
order to effectively protect the location privacy of participants
during task assignment [20], we can apply one of the following
methods:

• Anonymized method [21], [22]. With anonymization
technology, the identity information of the participant
can be anonymized, so the location submitted by the
participant will not be associated with their identity
information [23], [24].

• Dummy location method. With this strategy, the partic-
ipant can submit multiple locations, which can confuse
the attacker’s guess of the participant’s true location [25].

• Location confusion method [26], [27]. With this strategy,
the true location can be changed to other locations at
submission, thus the attacker can only see the location
of the participant after disturbance, instead of directly
obtaining the true location.

• Location privacy protection based on differential pri-
vacy [28], [29]. Differential privacy can provide strict
mathematical standards for data privacy protection. At the
same time, no matter what prior knowledge an attacker
has, appropriate strategies can be designed to meet the
needs of users [30], [31].

From the above several strategies, an attacker with prior
knowledge cannot be resisted with the first three strate-
gies [32]. However, with the differential privacy strategy,
the prior information of attackers can be well handled [33].
Therefore, the differential privacy mechanism is adopted in
this paper to solve the problem of location privacy protection
in the process of task assignment [34].

However, rather than directly applying differential privacy
to location privacy protection, service quality should also be
considered. In addition, considering the vehicular network
environment, how to design an optimal task allocation mech-
anism is discussed in this paper. Thus, we utilize differential
privacy to preserve location privacy of participants, and also
guarantee each task to set task completion quality in the
vehicle-based crowdsensing networks. With the objective to
minimize participants’ moving distance and maximize tasks’
quality, we design an optimal mechanism in this paper.
To be specific, the main contributions of this paper are as
follows:

• We propose an optimal location privacy preserving and
service quality guaranteed task allocation in vehicle-based
crowdsensing networks, which can preserve location pri-
vacy and improve task quality at the same time.

• We design an optimal mechanism with two objectives,
which can minimize participants’ moving distance and
maximize the whole service quality at the same time.
To solve the optimization problem, we decompose it into
two linear optimization problems, which can be solved
easily.

Fig. 1. Architecture of task allocation for vehicle-based crowdsensing
networks.

• We conduct extensive experiments to verify that our
proposed mechanism can reduce the distance and improve
quality, compared with traditional methods.

The remainder of this paper is organized as follows.
We introduce the system in Section II. We formulate the
model in Section III, and conduct the performance evaluation
in Section IV. Finally, we conclude this paper in Section V.

II. SYSTEM ILLUSTRATION

In this section, we first introduce the system model, and
then describe the application of differential privacy to location
privacy. This is followed by outlining the attack model, and
finally setting out the main objectives of this paper.

A. System Model

In crowdsensing IoV, vehicles can take advantage of faster
travel speeds and greater computing, communication, and
storage resources to engage in the task at hand. As shown
in Fig. 1, the whole vehicle-based crowdsensing network can
be divided into three parts: (i) participants, i.e., vehicle users;
(ii) task publishers, i.e., those who own the tasks, which
may include detecting air pollution or traffic conditions; and
(iii) the platform, which connects task publishers and partic-
ipants, distributes task publishers’ tasks to participants, and
passes the data collected by participants to task publishers.
Tasks in the network usually require the deployment of a
large number of dedicated devices, but one of the drawbacks
is a high cost. Through a crowdsensing platform, these tasks
can be distributed to participants, and data collection can be
distributed to and completed by the participants’ own sensors.

In the system model considered in this paper, the focus is
assingning task publishers’ tasks to participants. It is common
practice to choose participants who are closer to the task
location to perform the task, but this requires the platform to
know the actual location of participants in advance. In order
to avoid leaking participants’ private information, including
their true locations, participant locations must be privacy-
protected. The information protection model adopted in this
paper is differential privacy, which perturbs the true location
of participants and successfully obfuscates their information.
Therefore, in the entire vehicle-based crowdsensing network
system, after the platform publishes tasks, vehicles can submit
which tasks they are interested in, along with their perturbed
locations, to the platform.
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While ensuring that participants submit perturbed locations,
the platform must still select appropriate participants based on
the quality of services (QoS) requirements of the task publish-
ers’ tasks. For this reason, QoS is used in our system model as
an important metric to ensure that the optimal participants are
selected. By combining the above two considerations, we use
differential privacy to protect participants’ location data; mean-
while, the quality of our selected participants reaches the
required QoS of the task.

B. Differential Privacy

Differential privacy applied to location data has proven to be
an effective form of privacy protection [9], [26], [29]. Differ-
ential privacy here converts the real location into a perturbed
location as a probability function, and the subsequent task
assignment is then based on the perturbed location.

We assume that the particular set of locations under con-
sideration is L, and if the perturbation mechanism P satisfies
�−differential privacy, then

p(lo|l1
r ) ≤ e�d(l1

r ,l2
r ) p(lo|l2

r ), (1)

where p(lo|l1
r ) and p(lo|l2

r ) represent the probability of per-
turbing the true locations l1

r and l2
r to the perturbed location lo,

respectively. Without loss of generality, and assuming that lr
represents the true location, P(lo|lr ) denotes the probability of
perturbing that true location lr to the location lo. d(l1

r and l2
r )

denote the distance between the true locations l1
r and l2

r ,
respectively. Meanwhile, � represents the privacy budget. If the
user has a higher privacy requirement, then a smaller � can be
set; conversely, for lower privacy requirements, a larger � can
be set.

The inequality (1) demonstrates that when applying differ-
ential privacy to location data protection, for any two real
locations l1

r and l2
r , the probability of mapping these two

locations into perturbed locations lo is similar. Moreover,
the closer these two real locations l1

r and l2
r are to each other,

the more difficult it is for the attacker to distinguish them.

C. Attack Model

In this paper, the platform is considered honest-but-curious,
that is, the platform assigns tasks to participants based on their
submitted perturbed locations, and at the same time, the plat-
form is curious about the true locations of participants [35].

Given the aforementioned perturbation mechanism P ,
p(lr |lo) is the probability of mapping the perturbed location
lo to the true location lr . Based on probability theory, we can
then obtain the following:

p(lr |lo) = p(lo|lr )p(lr )

p(lo)
= p(lo|lr )p(lr )∑

lr p(lo|lr )p(lr )
(2)

By (2), we find that the probability of the attacker
(i.e., platform) to reconstruct the submitted perturbed location
lo into the true location lr is p(lr |lo), which is related to
the probability of the true location p(lr ) and p(lo|lr ). The
former can be obtained from historical data, while the latter is
determined by the perturbation mechanism P . Without loss of
generality, we assume that the perturbation mechanism P is

accessible to the attacker because, since the perturbation mech-
anism P is obtained externally, the mechanism is also easily
obtained by the platform. Furthermore, it is clear that p(lr |lo)
is bounded. Therefore, although the attacker can obtain partial
prior knowledge, the probability of reconstructing the true
location lr from the perturbed location lo is still limited.

D. Quality Guaranteed for Tasks

Considering the tasks published on the platform, partici-
pant data must be collected by the platform to complete a
given task. However, that each participant submits a perturbed
location inevitably introduces an issue of decreasing accuracy
in task assignment. For this reason, when setting up the task
assignment mechanism, the QoS of each task must also be
used as a metric during participant selection.

When performing task assignment, we must design a suit-
able participant selection mechanism that maximizes the qual-
ity of the selected participant performing the task. Therefore,
the quality of each vehicle user’s task completion needs to be
obtained by the platform. A key question is how to obtain the
quality of each vehicle user.

The quality of each vehicle user’s task completion can be
obtained by learning from historical data. For example, even
though a vehicle user registered on the platform does not
publish its real location data, the platform still has access to
the user’s registration ID and additional submitted data. Over
time, each participant’s historical data becomes available to
the platform. However, this is not the case for newly registered
users. Such users are called unknown workers. For unknown
workers whose quality information cannot be obtained in
advance, we can adopt a reinforcement learning approach that
takes the quality of each user’s task execution as a reward to
learn which users are of higher quality.

E. Design Objectives

In this paper, we design a task assignment strategy using
both location data protection and a QoS guarantee for crowd-
sensing IoV. The design objectives can be summarized as
follows:

• Preserving the location privacy of participants. To
encourage greater user participation in tasks and to avoid
leaking participant location data, our first goal is to
protect the locations of all participants using differential
privacy.

• Each published task’s completion quality must meet
predetermined quality requirements. Since each par-
ticipant submits their location after perturbation, task
assignment will inevitably yield lower assignment accu-
racy than if tasks were assigned with true participant
locations. Furthermore, each publisher pays a certain
amount of money to each participant who submits data
after completing the task. If there is no effective data
feedback, task publishers are less motivated to participate
on the platform. In order for task publishers to obtain
valid data, we design a task assignment strategy that also
meets the task publisher’s task quality requirements. This
is the second goal of the proposed mechanism.
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Based on the above two objectives, we design an optimized
task assignment policy that, (a) perturbs the real location of
each participant to protect the privacy of the participant’s
location, and (b) ensures that each published task meets its
quality requirements.

III. MODEL FORMULATION

In this section, we consider the use of vehicle users to
complete tasks in a crowdsensing IoV, and ensure that the
location privacy of each vehicle user is not compromised while
also satisfying certain task quality requirements.

A. Problem Formulation

We assume that the number of all vehicle participants is
m, and define their set as W = {w1, w2, . . . , wm}. The
real location of each participant w j is l j

r , and the perturbed
location after differential privacy protection is l j

o . Since the
task completion quality of each participant w j can be obtained
through learning, the participant’s quality can be denoted
as q j . The set of qualities of all users is denoted as Q, and
Q = {q1, q2, . . . , qm}.

Furthermore, we assume that the number of all tasks is n,
and define their set as T = {t1, t2, . . . , tn}. For each task ti ,
the location of the data to be collected is lt

i . For each task ti ,
when the task publisher publishes on the platform, it needs to
publish the location, time, and reward of the data collection
required by the task. The platform forwards this data to all
vehicle users. If a vehicle user w j is interested in the task ti ,
then w j returns {ti , l j

o } to the platform.
Therefore, for each task ti , the corresponding interested

participants are the set Wti , and every element of Wti is
participant w j , that is, w j ∈ W and w j applies for ti . For each
task ti , the data to be collected may contain multiple locations.
Thus, the number of participants needed to complete each task
ti is set to Nti . For this reason, appropriate participants need
to be selected from the set Wti to perform each task.

It is necessary for the platform to use perturbed locations
for task assignment. Thus, we denote x(ti , w j ) as the task
allocation strategy, and x(ti , w j ) = 1 means the participant
w j is selected for ti , that is the task ti has been allocated
to w j . x(ti , w j ) = 0 means the task ti has not been allocated
to w j . We write all x(ti , w j ) as the set X , where w j ∈ Wti .
The equation of x(ti , w j ) is formulated as follows:

x(ti , w j ) =
{

1 Task ti is allocated to w j

0 Otherwise
(3)

To preserve the location privacy of participants, any two
participants wi and w j should satisfy

p(lo|li
r ) ≤ e�d(li

r ,l
j
r ) p(lo|l j

r ) (4)

Appropriate participants are those closest to the task loca-
tion based on their perturbed location to collect data. Suppose
d(w j , ti ) denotes the distance from the real location of w j

to the task ti . The true location of each w j is not readily
available, but can be obtained by the following equation:

d(w j , ti ) =
∑

w j ∈Wti

p(l j
r )p(l j

o |l j
r )d(l j

o , lt
i ) (5)

where d(l j
o , lt

i ) denotes the distance from the perturbed loca-
tion l j

o of w j to the task location lt
i . One of the platform’s

goals of participant selection is to minimize the total distance
from the participants to the task location. We denote the total
distance as D:

D =
∑
ti∈T

∑
w j ∈Wti

x(ti , w j )p(l j
r )p(l j

o |l j
r )d(l j

o , lt
i ) (6)

According to the task completion quality q j of each vehicle
user w j , we need to design a task assignment mechanism
x(ti , w j ) that maximizes the total completion quality of the
selected participants. The task quality of each task ti is∑

w j ∈Wti
x(ti , w j )q j according to the participants who are

interested in the task. Then, the total quality is denoted as
Q, which is expressed as follows:

Q =
∑
ti∈T

∑
w j ∈Wti

x(ti , w j )q j (7)

Our goal is to minimize the distance traveled by the
selected participants and to maximize task completion qual-
ity, i.e., min D and max Q, simultaneously. To unify these
optimization objectives, we choose the variable ξ ∈ [0, 1],
unifying the two objectives as min(D − ξ Q). In summary,
the task assignment mechanism we establish can be expressed
as follows:

minimize
P,X

{D − ξ Q} (8a)

subject to p(lo|li
r ) ≤ e�d(li

r ,l
j
r ) p(lo|l j

r ), (8b)∑
ti∈T

x(ti , w j ) ≤ 1, (8c)

∑
w j ∈Wti

x(ti , w j ) = Nti , (8d)

∑
lo∈L

p(lo|l j
r ) = 1, (8e)

p(lo) =
m∑

j=1

p(lo|l j
r )p(l j

r ), (8f)

x(ti , w j ) = {0, 1}, (8g)

q j ∈ [0, 1], j = 1, 2, . . . , m. (8h)

Our objective function is to select the appropriate x(ti , w j )
while minimizing the distance traveled by participants and
maximizing the task completion quality. The first constraint
to our function is to satisfy location indistinguishability under
differential privacy. The second constraint is that each partici-
pant w j can be assigned at most one task. The third constraint
states that for each task ti , the number of participants to
be selected must satisfy a predefined Nti for that task. The
fourth restriction states that when using differential privacy,
the probability of perturbing any real location l j

r to location
lo is 1, and L denotes all locations. The fifth restriction
states that the proposed location-protecting differential privacy
mechanism must satisfy the probabilistic condition that, for
any one perturbed location lo, its probability can be solved
using the full probability formula. The sixth restriction states
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TABLE I

FREQUENTLY USED NOTATIONS

the range of values for x(ti , w j ). The seventh constraint states
the range of values for q j .

B. Optimization Analysis

In this section, we analytically solve the above optimization
problem. Since the problem is to optimize both the distance
traveled by participants and the quality of task completion,
we first decompose the optimization problem when solv-
ing it. From the perspective of optimization, the objective
of maximizing task completion quality determines the task
assignment policy X with higher task completion quality.
Meanwhile, the objective of minimizing the distance traveled
by participants determines the perturbation policy P . To this
end, we convert the above optimization problem into two
optimization problems, solving for task assignment X and
location perturbation P policies.

The optimization problem with respect to the task assign-
ment policy X is as follows:

minimize
X

− ξ Q (9a)

subject to
∑
ti∈T

x(ti , w j ) ≤ 1, (9b)

∑
w j ∈Wti

x(ti , w j ) = Nti , (9c)

x(ti , w j ) = {0, 1}, (9d)

q j ∈ [0, 1], j = 1, 2, . . . , m. (9e)

Since the optimization problem of task assignment policy
X has been transformed into a single objective optimization
problem, the parameter ξ can be omitted. This improves the
optimization objective, and allows us to obtain

maximize
X

∑
ti∈T

∑
w j ∈Wti

x(ti , w j )q j (10a)

subject to
∑
ti∈T

x(ti , w j ) ≤ 1, (10b)

∑
w j ∈Wti

x(ti , w j ) = Nti , (10c)

x(ti , w j ) = {0, 1}, (10d)

TABLE II

SIMULATION SETTINGS

q j ∈ [0, 1], j = 1, 2, . . . , m. (10e)

Based on the above optimization problem solving for X ,
we can obtain the task assignment policy X . The optimization
problem regarding the location perturbation policy P can be
obtained as follows:

minimize
P

∑
ti∈T

∑
w j ∈Wti

x(ti , w j )p(l j
r )p(l j

o |l j
r )d(l j

o , lt
i ) (11a)

subject to p(lo|li
r ) ≤ e�d(li

r ,l
j
r ) p(lo|l j

r ), (11b)∑
lo∈L

p(lo|l j
r ) = 1, (11c)

p(lo) =
m∑

j=1

p(lo|l j
r )p(l j

r ). (11d)

Task assignment policy X can be easily solved by the first
decomposition of the optimization problem. This is because
the first optimization problem, which is already a linear opti-
mization problem, can be solved by existing toolkits. The sec-
ond optimization problem, with known X , is converted into a
linear optimization problem on P . The location perturbation
policy P is then obtained by a similar method.

IV. PERFORMANCE EVALUATION

In this section, we first introduce the experimental data and
evaluation metric used. We then provide the benchmarks used
and conclude with experimental results and analysis.

A. Parameter Setting

In order to conveniently indicate user locations, we set
the targeted area to k × k grids, and the center of each
grid is set to the location of all users in the coverage
area. Note that the location here refers to the user’s real
location, and that the real locations of all users in the area
are taken as the center of the grid. Each grid is set to
2km × 2km. In this experiment, k takes values in the range
[3,5,7,9,11]. The number of all participants m is in the range
[10,20,30,40,50]. Meanwhile, the number of all tasks n is in
the range [1,10,19,28,37]. The quality of each task qi obeys
the standard normal distribution. The privacy budget � takes is
in the range of [ln(1.5), ln(2), ln(2.5), ln(3), ln(3.5)]. Table II
shows the settings for different parameters.

B. Evaluation Metric

1) Average Task Quality (ATQ): Average task quality rep-
resents the whole task completion quality after task allocation,
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Fig. 2. Impact of the number of tasks on average moving distance.

which can be denoted as follows,

AT Q = 1

n

∑
ti∈T

∑
w j ∈Wti

x(ti , w j )q j . (12)

2) Average Moving Distance (AMD): The average moving
distance represents the whole distance of all participants dur-
ing the task assignment process. Its mathematical expression
is as follows:

AM D = 1

m

∑
ti∈T

∑
w j ∈Wti

x(ti , w j )p(l j
r )p(l j

o |l j
r )d(l j

o , lt
i ) (13)

C. Benchmarks

In this experiment, we introduce two methods to compare
with our mechanism.

• Laplace mechanism [29]. Laplace mechanism is to add
Laplace noise when the differential privacy mechanism is
applied.

• Optimal mechanism without privacy preserving. We uti-
lize the optimal mechanism without the differential pri-
vacy technology when the platform to design task allo-
cation, denoted by No-Privacy method.

D. Results

1) Impact of the Number of Tasks on Average Moving
Distance: It can be seen from Fig. 2 that all the three
algorithms (Laplace mechanism, No privacy method and our
proposed method) will lead to the continuous increase of
average moving distance, as the number of tasks n increases.
In comparison of the three mechanisms, the average moving
distance brought by Laplace mechanism is the largest. Com-
pared with no privacy method, our proposed mechanism brings
a larger moving distance. This is because the platform knows
all participants’ real locations in terms of no privacy method.
However, our proposed method has little difference as for no
privacy method, which also shows the effectiveness of our
method. Moreover, compared with Laplace mechanism, our
proposed method has smaller average moving distance.

Fig. 3. Impact of the number of participants on average moving distance.

Fig. 4. Impact of privacy budget on average moving distance.

2) Impact of the Number of Participants on Average Moving
Distance: Fig. 3 describes the relationship between the num-
ber of participants and the average moving distance. It can be
seen from Fig. 3 that with the increase of number of partici-
pants, the average moving distance shows a downward trend.
This is because when the number of participants increases,
there are more choices to assign tasks for the task publishing
platform to consider, which means that the optimal participant
can be chosen through better selection. This reduces the
average moving distance. Compared with Laplace mechanism,
our method’s average moving distance is smaller. As men-
tioned before, no privacy method’s average moving distance
is smaller than that of our method. However, the no privacy
method does not preserve participants’ locations, which makes
it hard to apply in reality.

3) Impact of Privacy Budget on Average Moving Distance:
Fig. 4 describes the influence of differential privacy budget �
on the average moving distance. As � increases, the average
moving distance decreases in terms of Laplace mechanism and
our proposed method. This is because larger � denotes the
lower degree of privacy preserving, which leads to a lower
interference of disturbance locations of participants on the
accuracy of task allocation. Thus, the average moving distance
shows a downward trend. In addition, privacy budget � can not
influence on the no privacy. Compared with Laplace method,
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Fig. 5. Impact of the number of tasks on average task quality.

Fig. 6. Impact of the number of participants on average task quality.

our proposed method has a smaller average moving distance.
This is because our mechanism can bring global optimization,
while Laplace method can realize the local optimum.

4) Impact of the Number of Tasks on Average Task Quality:
Fig. 5 describes the impact of the number of tasks on average
task quality. From Fig. 5 we can observe, our proposed method
has higher average task quality than Laplace mechanism,
and lower task quality than no privacy method. Since no
privacy method did not preserve participants’ location privacy,
the platform can obtain the real locations and thus achieve high
performance. The other algorithms have protected location
privacy, which brings an accuracy decrease is acceptable
for both platform and task owners. In addition, the average
task quality shows a slow downward trend as the number
of task increases. With a greater number of tasks, fewer
participants can be selected, and this ultimately reduces the
task completion quality.

5) Impact of the Number of Participants on Average Task
Quality: Fig. 6 shows the impact of the number of participants
m on average task quality. From Fig. 6, we can observe,
average task quality increases as m grows. With the increase
of the number of participants, the platform can find more
participants to execute each task, which leads to increased of
task completion quality. Compared with Laplace mechanism,

Fig. 7. Impact of privacy budget on average task quality.

our proposed mechanism shows a higher average task quality
as the number of participants increases.

6) Impact of Privacy Budget on Average Task Quality:
Fig. 7 shows the impact of privacy budget � on average task
quality. As shown in Fig. 7, we can observe that � has no effect
on no privacy method, which is consistent with the impact of
� on the average moving distance. That is because no privacy
method did not utilize the privacy budget, i.e., parameter �,
no influence on the result in turn. Compared with Laplace
mechanism, our method proposed in this paper shows a higher
average task quality.

V. CONCLUSION

In this paper, we proposed an optimal task allocation mech-
anism with considering location privacy preserving and service
quality in vehicle-based crowdsensing networks. It utilizes
differential privacy to preserve location privacy of participants.
Moreover, it allows every task to set its completion quality.
We design the optimal mechanism which aims at minimizing
participants’ moving distance and improving the service qual-
ity. In order to solve this optimization problem, we decompose
it into two linear optimization problems. The proposed optimal
mechanism is verified by extensive experiments.
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