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ABSTRACT

Secure messaging heavily relies on a session key negotiated by an
Authenticated Key Exchange (AKE) protocol. However, existing
AKE protocols only verify the existence of a random secret key
(corresponding to a certificated public key) stored in the terminal,
rather than a legal user who uses the messaging application. In
this paper, we propose a Biometrics-Authenticated Key Exchange
(BAKE) framework, in which a secret key is derived from a user’s
biometric characteristics that are not necessary to be stored. To
protect the privacy of users’ biometric characteristics and realize
one-round key exchange, we present an Asymmetric Fuzzy Encap-
sulation Mechanism (AFEM) to encapsulate messages with a public
key derived from a biometric secret key, such that only a similar
secret key can decapsulate them. To manifest the practicality, we
present two AFEM constructions for two types of biometric secret
keys and instantiate them with irises and fingerprints, respectively.
We perform security analysis of BAKE and show its performance
through extensive experiments.
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1 INTRODUCTION

Social messaging applications have become a mainstream means of
daily communication due to their convenience. As of January 2021,
three messaging applications, including WhatsApp, Facebook Mes-
senger, andWeChat, have even more than 1.2 billion monthly active
users [46]. Most messaging applications follow a store-and-forward
paradigm, where a service provider passes messages between two
communicating participants [47, 48]. To keep adversaries, including
the service provider, from access to messages during storing and
forwarding, the messages need to be encrypted so that only the
communicating participants can read them. This feature is known
as end-to-end encryption [14, 43], in which participants carry out
Authenticated Key Exchange (AKE) to authenticate each other and
negotiate on a session key [19, 34, 54, 56], and then use this key to
secure messaging.

Although some messaging applications have deployed end-to-
end encryption (e.g., Signal [44], WhatsApp [51], Facebook Mes-
senger [22], and Wire [27]), they all rely on traditional public-key
technology. Roughly speaking, each participant generates a pair
of public and secret keys and publishes the public key to the other
participant. Then, the two communicating participants can execute
a (possibly asynchronous) AKE protocol based on their keys. Unfor-
tunately, those AKE protocols are not suitable for secure messaging
in practice. First, those AKE protocols actually verify the possession
of the secret key rather than the participant herself/himself. Since
the secret key is usually stored in a terminal, an adversary can
launch lunchtime attacks to impersonate that participant without
any knowledge about the secret key [20]. Second, the secret key
may be stolen if an adversary has access to the terminal [8]. More
importantly, messaging applications cannot immediately determine
whether a secret key is cloned [15]. Third, when a participant loses
or replaces the terminal, it is difficult to update the public-secret key
pair timely since every new public key needs to be authenticated
through an out-of-band fashion before enabling it [12].
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In this paper, we seek to design a Biometrics-Authenticated Key

Exchange (BAKE) framework, in which a participant generates a
secret key and a corresponding public key based on her/his biomet-
ric characteristics. A straightforward advantage of this framework
is that the session key is negotiated for authenticated users, not
authenticated random public keys. Since the secret key can be gener-
ated based on the biometric characteristics when needed, the secret
key (and biometric characteristics) is never stored in the terminal,
and there is no need to update the secret key and the corresponding
public key when replacing terminals. The main disadvantage is
that biometric characteristics are permanent, which means that the
secret key cannot be updated after it is leaked. Fortunately, stealing
biometric characteristics is not that simple, since many biometric
characteristics (e.g., iris [28] and ear canal dimension [25]) require
dedicated equipment to capture within a very short distance. Even
for stealing fingerprints, an adversary needs to have access to what
the victim has touched. Moreover, messaging applications can de-
feat biometric cloning and replay attacks with well-studied liveness
detection techniques [2, 40, 53, 55, 57].

The major challenge of our design is to protect participants’
biometric characteristics as required under regulations on data pro-
tection, such as General Data Protection Regulation (GDPR), while
tolerating noises in biometric characteristics. We note that a highly
related work, called Fuzzy Asymmetric Password-Authenticated
Key Exchange (fuzzy aPAKE), was proposed by Erwig et al. [21].
However, their solutions have two limitations. First, they require
the communicating participants to run interactive cryptographic
primitives (e.g., the oblivious transfer) many times, which intro-
duces heavy communication overhead and is not suitable for asyn-
chronous scenarios where the participants are not online at the
same time. Second, they require that the biometric representation
should be a rotation-invariant bit string, which means that a sim-
ilar string can be extracted even if the captured biometric image
is rotated. Some biometric representations (e.g., FingerCode [31],
the most common fingerprint representation) do not satisfy the
rotation-invariant property.

To tackle the asynchronous issue, we present a mechanism that
encapsulates messages with the biometric public key of a partic-
ipant, so that only the participant with similar biometric charac-
teristics can obtain them, called Asymmetric Fuzzy Encapsulation

Mechanism (AFEM). With AFEM, we propose a BAKE framework,
whose authenticated key exchange phase is a one-round proto-
col. To solve the rotation-invariant issue, we propose two AFEM
constructions for biometric vector and biometric vector set, respec-
tively. The key insight is that many biometric characteristics are
composed of discrete points, in which we can extract a rotation-
invariant biometric vector set through the relative relationship of
those points.

We conclude our main contributions as follows.

• We introduce a new notion of an asymmetric cryptographic
protocol called biometrics-authenticated key exchange, in which
secret keys are derived from biometric characteristics.

• Considering the asynchronous issue in secure messaging and dif-
ferent types of biometric secret keys, we propose an asymmetric
fuzzy encapsulation mechanism along with two constructions
for biometric vector and biometric vector set, respectively.
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Figure 1: Systemmodel of biometrics-authenticated key ex-

change for secure messaging.

• We instantiate two biometrics-authenticated key exchange proto-
cols for realistic biometric characteristics: irises and fingerprints.
Specifically, we employ the most common IrisCode [16] for irises
and design a rotation-invariant presentation for fingerprints.

• We conduct experiments on our two instantiations. The running
time of our protocols is less than 0.2s on a realistic iris dataset, and
is less than 0.5s on a realistic fingerprint dataset, which is at least
2000 times faster than fuzzy aPAKE [21]. The communication
cost of our two instantiations is about 12.2KB and 2.7KB, which
is at least 50 times lower than fuzzy aPAKE.

2 PROBLEM STATEMENT

This section briefly describes the system model, the threat model,
and the design goals of biometrics-authenticated key exchange.

2.1 System Model

This work aims to provide a two-party bidirectional Biometrics-
Authenticated Key Exchange (BAKE) for end-to-end secure messag-
ing. As shown in Figure 1, there are two participants in our system:
the sender P0 who initiates a session request and the receiver P1

who responds to this request. We sometimes use the terms “user”
or “terminal” instead of “participant”, where a user refers to a hu-
man who intends to participate in secure messaging and a terminal
refers to a device that is possessed by a user, e.g., a smartphone. A
BAKE protocol is an asymmetric cryptographic primitive, in which
a secret key is derived from the biometric characteristics of a user,
such as an iris or a fingerprint, and a public key is derived from the
corresponding secret key.

Specifically, a BAKE protocol consists of three phases. In the
initialization (Init) phase, two participants agree on a set of public
parameters 𝑝𝑝 to initialize the whole system. In the key generation

(KeyGen) phase, each participant P𝑖 (𝑖 ∈ {0, 1}) generates a public
key 𝑝𝑘𝑖 based on her/his biometric characteristics and sends the
public key to the other participant P1−𝑖 . In the authenticated key
exchange (AKE) phase, the senderP0 makes a request to the receiver
P1 to authenticate each other and negotiate on a session key 𝑘 that
can be used to establish a secure channel. The participant needs
her/his biometric characteristics and the public key of the other
participant as input in this phase. Note that asynchronous scenarios
require the AKE phase should be a one-round protocol.
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2.2 Threat Model

As in other AKE protocols [19, 21], we only consider active adver-
saries in the network. Note that an honest-but-curious participant
may try to learn the other participant’s biometric characteristics
from the BAKE protocol. However, this kind of attacks can be im-
plemented by an adversary that only eavesdrops on the network.
More specifically, we require that the participant’s biometric char-
acteristics and the session key are protected under the following
threat model.

• Insecure Channel. We assume that adversaries have complete
control of the channel between two participants in the AKE phase.
That means an adversary can eavesdrop on, tamper with, and
throw away any message in that phase.

• Safeguarded Terminal. We assume that a terminal processes
a user’s biometric characteristics honestly. Specifically, the ter-
minal does not store the captured biometric characteristics or
reveal the biometric characteristics to adversaries.

2.3 Design Goals

Our BAKE protocol should have the following properties.

• Mutual Authentication. Both participants authenticate each
other using biometrics before actual messaging.

• Secure Key Establishment. A consistent session key is agreed
upon between the sender and receiver and is only accessible to
these two participants.

• Biometric Privacy. An adversary, including the communicat-
ing participant, cannot obtain the biometric characteristics of a
participant from the protocol.

• High Performance. Both the computation and communication
overhead of BAKE protocols should be low, which is critical for
constrained environments, e.g., mobile networks.

Note that fuzzy aPAKE [21] also achieves the first three goals and
additionally provides the Universally Composable (UC) security, but
fuzzy aPAKE dissatisfies the last goal since it involves heavy com-
munication and computation overhead. In addition, fuzzy aPAKE
only supports fuzzy vectors (e.g., password) and is not suitable for
asynchronous scenarios.

3 ASYMMETRIC FUZZY ENCAPSULATION
MECHANISM

The core idea of our BAKE constructions is to derive a session
key from random strings that are only accessible to the participant
with correct biometric characteristics. To this end, we propose a
cryptographic primitive called Asymmetric Fuzzy Encapsulation

Mechanism (AFEM), which encapsulates a message with a public
key that is corresponding to a target secret key. Only the participant
who possesses a secret key close to the target secret key can obtain
the random string from the encapsulated message.

We first introduce the syntax of AFEM and define the security
notion for AFEM. Then, we present two constructions for two types
of biometric secret keys.

3.1 Syntax

Let SK be the set of all possible secret keys, S be the set of all
possible plain messages, and 𝑑𝑖𝑠 (·, ·) be a function that calculates

the closeness of two inputs. We assume that the set of all possible
public parameters, the set of all possible public keys, and the set
of all possible encapsulated messages are implicitly defined in the
algorithms.

Definition 3.1 (AFEM). An asymmetric fuzzy encapsulationmech-
anism AFEM is a tuple of four Probabilistic Polynomial Time (PPT)
algorithms (Setup, PubGen, Enc, Dec) that satisfies the following
syntax with the correctness property.

– Setup(1𝜆, 𝜏) → 𝑝𝑎𝑟 : This setup algorithm takes as input a se-
curity parameter 𝜆 ∈ N and a threshold 𝜏 ∈ N. It generates a
set of public parameters 𝑝𝑎𝑟 , which is an implicit input to the
following algorithms.

– PubGen(𝑠𝑘) → 𝑝𝑘 : This public key generation algorithm takes
as input a secret key 𝑠𝑘 ∈ SK . It outputs a public key 𝑝𝑘 . (Notably,
this kind of secret key is derived from biometric characteristics.)

– Enc(𝑝𝑘, 𝑠) → 𝑐: This encapsulation algorithm takes as input a
public key 𝑝𝑘 and a plain message 𝑠 ∈ S. It outputs an encapsu-
lated message 𝑐 .

– Dec(𝑠𝑘 ′, 𝑐) → 𝑠/⊥: This deterministic decapsulation algorithm
takes as input a secret key 𝑠𝑘 ′ ∈ SK and an encapsulated mes-
sage 𝑐 . It returns a plain message 𝑠 if 𝑑𝑖𝑠 (𝑠𝑘, 𝑠𝑘 ′) < 𝜏 or a failure
symbol ⊥ otherwise.

Correctness. For any 𝜆 ∈ N, any 𝜏 ∈ N, any 𝑝𝑎𝑟 generated by
Setup, any secret key 𝑠𝑘, 𝑠𝑘 ′ ∈ SK , and any plain message 𝑠 ∈ S,
Dec(𝑠𝑘 ′, Enc(PubGen(𝑠𝑘), 𝑠)) = 𝑠 if 𝑑𝑖𝑠 (𝑠𝑘, 𝑠𝑘 ′) < 𝜏 .

Security. The semantic security is defined by an attack game
between a challenger C and an adversary A. Particularly, for any
PPT adversary A, the advantage of A in the following experiment

ExpA(1𝜆) is negligible.

(1) On input a security parameter 1𝜆 , A outputs an appropriate
threshold 𝜏 such that it satisfies the privacy and robustness
properties for the secret key, and sends 𝜏 to C.

(2) C executes Setup(1𝜆, 𝜏) → 𝑝𝑎𝑟 , PubGen(𝑝𝑎𝑟, 𝑠𝑘) → 𝑝𝑘 , and
sends 𝑝𝑘 to A.

(3) A is given input 1𝜆 , 𝑝𝑎𝑟 , and oracle access to Enc(·).
(4) C generates a new secret key 𝑠𝑘 ′ such that 𝑑𝑖𝑠 (𝑠𝑘, 𝑠𝑘 ′) < 𝜏 . Fur-

ther, C sends the encapsulated message 𝑐 ← AFEM.Enc(𝑝𝑘, 𝑏)
for 𝑏 ← {0, 1} to A.

(5) A outputs a guess 𝑏 ′ ∈ {0, 1}. The advantage of the adversary
is denoted as |Pr[𝑏 = 𝑏 ′] − 1/2|.

3.2 Construction for Biometric Vector

We propose the first AFEM construction for secret keys in the form
of biometric vectors, which means that the biometric characteristics
of a participant can be converted into a string. Assuming the secret
key is 𝑠𝑘 = u ∈ F𝑚𝑞 , where 𝑞 is a prime and F𝑞 is a finite field, and
the closeness is defined by Hamming distance, we give the technical
description and construction as follows.

3.2.1 Generating Public Key. The key idea is to exploit the Learning
With Errors (LWE) problem to securely encode a traditional secret
key into a vector with the help of a biometric vector. Specifically, a

random vector x ∈ F𝑙𝑞 is encoded by e = Ax+u, where A ∈ F𝑚×𝑙
𝑞 is

a random matrix and u is the biometric vector. Then, x is mapped
to Z𝑞 through a hash function 𝐻 : {0, 1}∗ → Z𝑞 , which allows us
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Algorithm 1: Decoding algorithm Decode𝜏

1 Input A, b
2 Randomly select rows without replacement

𝑗1, . . . , 𝑗2𝑙 ← [1,𝑚]

3 Restrict A, b to rows 𝑗1, . . . , 𝑗2𝑙 and denote as A𝑗1,..., 𝑗2𝑙 ,
b
𝑗1,..., 𝑗2𝑙

4 if there exist 𝑙 linearly independent rows of A𝑗1,..., 𝑗2𝑙 then
5 Let A′ = A

𝑗1,..., 𝑗2𝑙 , b′ = b
𝑗1,..., 𝑗2𝑙

6 Compute x′ = A
′−1

b
′

7 else
8 Abort

9 if b − Ax
′ has more than 𝜏 nonzero coordinates then

10 Go to step 2

11 Output x′

to adopt an ElGamal-like encryption. Therefore, the public key is

(A, e, 𝑦 = 𝑔𝐻 (x) ), where 𝑔 is a generator of a group.

3.2.2 Encapsulating Message. To encapsulate a message 𝑠 , we en-
crypt it with an ElGamal-like encryption. Specifically, for the public
key 𝑦, a random value 𝑟 ∈ Z𝑞 is selected. Then, the encrypted
message is (𝑔𝑟 , 𝑦𝑟 ⊕ 𝑠).

3.2.3 Decapsulating with Implicit Authentication. To decapsulate
the encapsulated message, we need to recover the traditional se-
cret key. Due to the difficulty of the LWE problem, the key can
be recovered only if the two biometric vectors are similar, which
realizes implicit authentication. Specifically, we employ a decoding
algorithm Decode𝜏 as shown in Algorithm 1, which can decode a
random linear code with at most 𝜏 errors [24].

3.2.4 Putting it All Together. Let 𝑠𝑘, 𝑠𝑘 ′ ∈ F𝑚𝑞 and 𝑠 ∈ G. The
AFEM construction for the biometric vector is as follows.

– Setup(1𝜆, 𝜏). Output 𝑝𝑎𝑟 = (𝜆,G, 𝑞, 𝑔, 𝜏,𝑚, 𝑙, 𝐻 ) where G is a
cyclic group of prime order 𝑞, 𝑔 is a generator of G,𝑚 ≥ 3𝑙 ∈ N,
and 𝐻 : {0, 1}∗ → Z𝑞 is a hash function.

– PubGen(𝑠𝑘). Parse 𝑠𝑘 as u. Choose a random matrix A ∈ F𝑚×𝑙
𝑞

and a random vector x ∈ F𝑙𝑞 . Compute e = Ax + u and 𝑦 = 𝑔𝐻 (x)

and output 𝑝𝑘 = (A, e, 𝑦).
– Enc(𝑝𝑘, 𝑠). Parse 𝑝𝑘 as (A, e, 𝑦). Choose a random 𝑟 ∈ Z𝑞 . Com-
pute 𝑐0 = 𝑔𝑟 and 𝑐1 = 𝑦𝑟 ⊕ 𝑠 and output 𝑐 = (A, e, 𝑐0, 𝑐1).

– Dec(𝑠𝑘 ′, 𝑐). Parse 𝑠𝑘 ′ as u′ and 𝑐 as (A, e, 𝑐0, 𝑐1). Compute x′ =
Decode𝜏 (A, e−u

′). Output⊥ if the decoding algorithm is aborted

and otherwise 𝑠 = 𝑐1 ⊕ 𝑐
𝐻 (x′)
0 .

Since the correctness is clear, below, we sketch the security.

Theorem 3.2. The AFEM scheme is semantic secure guaranteed

by the decisional-LWE assumption and DDH assumption under the

random oracle model.

Our goal is to show that any PPT adversary A can only break
the semantic security with negligible advantage. Next, we show the
security via the following hybrids.

Hy.0. This is the real game with any PPT adversary A and a
challenger C. The game outputs 1 if 𝑏 ′ = 𝑏 and 0 otherwise. We

define the advantage Adv
Hy0
A

(𝜆) = 𝑃𝑟 [𝑏 = 𝑏 ′].
Hy.1. Hy.1 is identical to Hy.0 except that we use e′ from the

uniform distribution to replace the second element e = Ax + u in

𝑝𝑘 . Under the decisional-LWE assumption, the uniform e
′ is com-

putationally indistinguishable from e = Ax + u with computational

distance 𝑛𝑒𝑔𝑙 (𝜆). Thus, we have Adv
Hy0
A

(𝜆) ≤ Adv
Hy1
A

(𝜆) +𝑛𝑒𝑔𝑙 (𝜆).
Hy.2. Hy.2 is identical to Hy.1 except that we use ℎ from the

uniform to replace 𝐻 (x), and the random oracle guarantees no
PPT adversary can distinguish 𝐻 (x) from the uniform. Further, the
discrete-logarithm assumption guarantees no one has the ability to
obtain x given 𝑦 and 𝑔, which implies that no PPT adversary can

tell the diffidence between 𝑦 = 𝑔𝐻 (x) and 𝑦′ = 𝑔ℎ . Thus, we have

Adv
Hy1
A

(𝜆) ≤ Adv
Hy2
A

(𝜆) + 𝑛𝑒𝑔𝑙 (𝜆).
Hy.3. Hy.3 is identical to Hy.2 except that we use 𝑧 from the

uniform to calculate 𝑐 ′1 = 𝑠⊕𝑔
𝑧 . Under the decisional Diffie-Hellman

(DDH) assumption, 𝑐 ′1 is computationally indistinguishable from 𝑐1

with computational distance 𝑛𝑒𝑔𝑙 (𝜆), thus, we have Adv
Hy2
A

(𝜆) ≤

Adv
Hy3
A

(𝜆) + 𝑛𝑒𝑔𝑙 (𝜆). In Hy.3, all the elements of both the public

key and the ciphertext are uniformly random and independent of

the message. Hence, Adv
Hy3
A

(𝜆) = 1/2.

Finally, we haveAdv
Hy0
A

(𝜆) ≤ 1/2+𝑛𝑒𝑔𝑙 (𝜆). Therefore, the adver-
sary A can break the semantic security with negligible advantage.
This completes the sketched proof.

3.3 Construction for Biometric Vector Set

We propose the second AFEM construction for secret keys in the
form of biometric vector sets, which means that the biometric
characteristics of a participant can be converted into a set of strings.
Assuming the secret key is 𝑠𝑘 = {u1, . . . , u𝑛} where u𝑗 ∈ {0, 1}∗

for 𝑗 ∈ [1, 𝑛] and the closeness is defined by set difference, we give
the technical description and construction as follows.

3.3.1 Generating Public Key. Different from biometric vector, bio-
metric vector set usually consists of many relatively short vectors
(but each vector still has enough entropy) that are not suitable for
LWE-based constructions. Fortunately, we can obtain many of the
same biometric vectors in two captures due to the relatively short
length. Then, these biometric vectors can be treated as traditional
secret keys as in Section 3.2. Specifically, for u𝑗 ∈ 𝑠𝑘 ( 𝑗 ∈ [1, 𝑛]),

the corresponding partial public key is 𝑦 𝑗 = 𝑔𝐻 (u𝑗 ) , where 𝑔 is
a generator of a group and 𝐻 : {0, 1}∗ → Z𝑞 is a hash function.
Considering the relatively short length, we can further require 𝐻
to be a computationally expensive hash function.

3.3.2 Encapsulating Message. To encapsulate a message 𝑠 , we also
employ an ElGamal-like encryption as in Section 3.2. Instead of en-
crypting 𝑠 with each partial public key, we first divide 𝑠 into𝑛 shares
with a (𝑡, 𝑛) Verifiable Secret Sharing (VSS) scheme [23] and then
encrypt each share with one partial public key. To further protect
the encrypted shares, we transform them into a set of points and ob-
tain a polynomial through interpolation. Specifically, we employ the
VSS scheme proposed by Paul Feldmanwhose share generation algo-
rithm isVSS.ShareGen(𝑠, 𝑡, 𝑛) → ({𝑠1, . . . , 𝑠𝑛}, {𝑐𝑜𝑚0, . . . , 𝑐𝑜𝑚𝑡−1}).
A random value 𝑟 ∈ Z𝑞 is selected for encrypting each share as
(𝑔𝑟 , 𝛽 𝑗 = 𝑦𝑟𝑗 ⊕ 𝑠 𝑗 ) ( 𝑗 ∈ [1, 𝑛]). Then, another random value 𝑟 ′ ∈ Z𝑞

is selected and each 𝛽 𝑗 is transformed into a point (𝛼 𝑗 = 𝑦𝑟
′

𝑗 , 𝛽 𝑗 ). Fi-

nally, we interpolate the unique polynomial 𝑝𝑜𝑙𝑦 of degree𝑛−1 over
the points {(𝛼1, 𝛽1), . . . , (𝛼𝑛, 𝛽𝑛)} that consists of 𝑛 coefficients.
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P0 P1

Init Phase

Run AFEM.Setup(𝜆, 𝑡) → 𝑝𝑎𝑟
Set 𝑝𝑝 = 𝑝𝑎𝑟

KeyGen Phase

Generate 𝑠𝑘0 ∈ SK Generate 𝑠𝑘1 ∈ SK

Run AFEM.PubGen(𝑠𝑘0) → 𝑝𝑘0 Run AFEM.PubGen(𝑠𝑘1) → 𝑝𝑘1
𝑝𝑘0 �

� 𝑝𝑘1

AKE Phase

Choose 𝑠0
$
← S Choose 𝑠1

$
← S

Run AFEM.Enc(𝑝𝑘1, 𝑠0) → 𝑐0 Run AFEM.Enc(𝑝𝑘0, 𝑠1) → 𝑐1
𝑐0 �

� 𝑐1

Generate 𝑠𝑘 ′0 ∈ SK Generate 𝑠𝑘 ′1 ∈ SK

Run AFEM.Dec(𝑠𝑘 ′0, 𝑐1) → 𝑠 ′1 Run AFEM.Dec(𝑠𝑘 ′1, 𝑐0) → 𝑠 ′0
Output 𝑘0 = 𝐻 (𝑝𝑘0 | |𝑝𝑘1 | |𝑐0 | |𝑐1 | |𝑠0 | |𝑠

′
1) Output 𝑘1 = 𝐻 (𝑝𝑘0 | |𝑝𝑘1 | |𝑐0 | |𝑐1 | |𝑠

′
0 | |𝑠1)

Figure 2: Detail of our BAKE framework.

3.3.3 Decapsulating with Implicit Authentication. Generally, a (𝑡, 𝑛)
VSS scheme has the property that any 𝑡 or more than 𝑡 shares can
recover 𝑠 while any less than 𝑡 shares reveal no information about
𝑠 , and check whether the shares can be used to reconstruct the mes-
sage. Therefore, the authentication is guaranteed implicitly. Specifi-
cally,𝑛 encrypted shares are obtained from the polynomial 𝑝𝑜𝑙𝑦 and
are decrypted as in Section 3.2. Then, each share can be verified by
running the verification algorithmVSS.Verify({𝑐𝑜𝑚0, . . . , 𝑐𝑜𝑚𝑡−1},
𝑠 𝑗 ), where the output 1 means that 𝑠 𝑗 is valid. If the number of valid
shares is not less than the threshold 𝑡 , all valid shares could be recov-
ered as the original message 𝑠 by running the share reconstruction
algorithm VSS.ShareRecon.

3.3.4 Putting it All Together. Let 𝑠𝑘 = {u1, . . . , u𝑛}, 𝑠𝑘
′ = {u′1, . . . ,

u
′
𝑛}, and 𝑠 ∈ G. The AFEM construction for the biometric vector

set is as follows.

– Setup(1𝜆, 𝜏). Output 𝑝𝑎𝑟 = (𝜆,G, 𝑞, 𝑔, 𝜏, 𝑛, 𝐻 ) where G is a cyclic
group of prime order 𝑞, 𝑔 is a generator of G, and 𝐻 : {0, 1}∗ →
Z𝑞 is a hash function.

– PubGen(𝑠𝑘). Parse 𝑠𝑘 as {u1, . . . , u𝑛}. Compute 𝑦 𝑗 = 𝑔𝐻 (u𝑗 ) for
𝑗 ∈ [1, 𝑛] and output 𝑝𝑘 = {𝑦1, . . . , 𝑦𝑛}.

– Enc(𝑝𝑘, 𝑠). Parse 𝑝𝑘 as {𝑦1, . . . , 𝑦𝑛}. Run VSS.ShareGen(𝑠, 𝑛 −

𝜏, 𝑛) → ({𝑠1, . . . , 𝑠𝑛}, {𝑐𝑜𝑚0, . . . , 𝑐𝑜𝑚𝑛−𝜏−1}). Interpolate a poly-

nomial 𝑝𝑜𝑙𝑦 on the point set {(𝑦𝑟
′

1 , 𝑦
𝑟
1⊕𝑠1),. . . , (𝑦

𝑟 ′
𝑛, 𝑦

𝑟
𝑛⊕𝑠𝑛)}where

𝑟 ′, 𝑟
$
← Z𝑞 , and output 𝑐 = (𝑝𝑜𝑙𝑦, 𝑔𝑟

′
, 𝑔𝑟, {𝑐𝑜𝑚0,. . ., 𝑐𝑜𝑚𝑛−𝜏−1}).

– Dec(𝑠𝑘 ′, 𝑐). Parse 𝑠𝑘 ′ as {u′1, . . . , u
′
𝑛} and 𝑐 as (𝑝𝑜𝑙𝑦, 𝑔

𝑟 ′, 𝑔𝑟 , {𝑐𝑜𝑚0,

. . . , 𝑐𝑜𝑚𝑛−𝜏−1}). Compute 𝑠 ′𝑗 = 𝑝𝑜𝑙𝑦
(
(𝑔𝑟

′
)
𝐻 (u′𝑗 )

)
⊕ (𝑔𝑟 )𝐻 (u′𝑗 )

and run VSS.Verify({𝑐𝑜𝑚0, . . . , 𝑐𝑜𝑚𝑛−𝜏−1}, 𝑠
′
𝑗 ) to check the va-

lidity for 𝑗 ∈ [1, 𝑛]. Output ⊥ if the number of valid shares is less
than 𝑛 − 𝜏 and otherwise the output of VSS.ShareRecon on the
𝑛 − 𝜏 valid shares.

The correctness is clear and the semantic security is guaranteed
by the DDH assumption under the random oracle model. We omit
the details since the analysis is similar to that in Section 3.2.

4 BIOMETRICS-AUTHENTICATED KEY
EXCHANGE FOR SECURE MESSAGING

We design a Biometrics-Authenticated Key Exchange (BAKE) frame-
work based on AFEM and explain how this framework can be ap-
plied to secure messaging. We also instantiate BAKE with two
common biometric characteristics, including irises and fingerprints,
to intuitively show the practicability of our BAKE framework.

4.1 BAKE Framework

Our BAKE framework involves two participants communicating
on an insecure channel and consists of three phases: the initial-
ization (Init) phase, the key generation (KeyGen) phase, and the
authenticated key exchange (AKE) phase. The core idea of our
framework is to derive a session key for secure messaging from
random strings generated by two participants. To securely transmit
a random string generated by one participant to the other one, we
employ an AFEM scheme to encapsulate the string. Authentication
is implicitly executed when a participant tries to decapsulate the
received encapsulated string. The detail of our BAKE framework is
shown in Figure 2.

Init Phase. This phase provides all public parameters required
in other phases. Specifically, P0 and P1 have to agree on essential
parameters, that is, the security parameter 𝜆 and the threshold 𝜏 .
Then, the setup algorithm AFEM.Setup is invoked to produce the
public parameters 𝑝𝑎𝑟 of AFEM. Finally, the public parameters of
BAKE are set to 𝑝𝑎𝑟 and are accessible to both participants.

In real-world applications (e.g., secure messaging), a service
provider could produce the public parameters 𝑝𝑝 and publish them
on a bulletin board or encode them into software, so that every
participant can access them.

KeyGen Phase. In this phase, each participant produces a pub-
lic key based on her/his biometric characteristics and sends it to
the other one. Specifically, P𝑖 (𝑖 ∈ {0, 1}) generates a secret key 𝑠𝑘𝑖
based on the biometric characteristics, which is instantiated in the
following two subsections. Then, P𝑖 obtains her/his public key 𝑝𝑘𝑖
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P0 P1

AKE Phase

(Session sid0)

Choose 𝑠sid00

$
← S

Run AFEM.Enc(𝑝𝑘1, 𝑠
sid0
0 ) → 𝑐sid00

Output 𝑘sid00 = 𝐻 (𝑝𝑘0 | |𝑝𝑘1 | |sid0 | |𝑐
sid0
0 | |𝑠sid00 )

sid0, 𝑐
sid0
0 �

Run AFEM.Dec(𝑠𝑘
sid′0
1 , 𝑐sid00 ) → 𝑠

sid′0
0

Output 𝑘sid01 = 𝐻 (𝑝𝑘0 | |𝑝𝑘1 | |sid0 | |𝑐
sid0
0 | |𝑠

sid′0
0 )

(Session sid1)

Choose 𝑠sid11

$
← S

Run AFEM.Enc(𝑝𝑘0, 𝑠
sid1
1 ) → 𝑐sid11

Output 𝑘sid11 = 𝐻 (𝑝𝑘0 | |𝑝𝑘1 | |sid1 | |𝑘
sid0
1 | |𝑐sid11 | |𝑠sid11 )

�
sid1, 𝑐

sid1
1

Run AFEM.Dec(𝑠𝑘
sid′1
0 , 𝑐sid11 ) → 𝑠

sid′1
1

Output 𝑘sid10 = 𝐻 (𝑝𝑘0 | |𝑝𝑘1 | |sid1 | |𝑘
sid0
0 | |𝑐sid11 | |𝑠

sid′1
1 )

...

Figure 3: Asynchronous mode of our BAKE framework.

by running the public key generation algorithm AFEM.PubGen.
Finally, P𝑖 sends the public key 𝑝𝑘𝑖 to P1−𝑖 through an authenti-
cated channel, which means that adversaries cannot modify that
public key. Note that the requirement of an authenticated channel
is essential for all authenticated key exchange protocols [6].

In real-world applications, the authenticated channel can be
implemented by Public-Key Infrastructure (PKI) technology [52], in
which an authority generates a certificate to bind an identity and
a public key. Messaging applications also suggest an out-of-band
fashion to authenticate public keys, such as comparing public key
fingerprints and scanning a Quick Response (QR) code [44].

AKE Phase. This phase enables both participants to authenti-
cate each other and negotiate a session key. Specifically, P𝑖 (𝑖 ∈
{0, 1}) first chooses a random message 𝑠𝑖 . Then, 𝑠𝑖 is encapsulated
into 𝑐𝑖 by running the encapsulation algorithm AFEM.Enc and sent
to P1−𝑖 . After receiving 𝑐1−𝑖 , P𝑖 generates a secret key 𝑠𝑘

′
𝑖 based on

the biometric characteristics and decapsulates 𝑐1−𝑖 using the decap-
sulation algorithm AFEM.Dec to obtain 𝑠 ′1−𝑖 . Finally, P𝑖 computes
a session key 𝑘𝑖 by a hash function 𝐻 .

In real-world applications, communicating participants are usu-
ally not online at the same time and a participant may want to
leave a message to an offline participant through a service provider.
To deal with this asynchronous scenario, we design another AKE
phase that allows a unidirectional session key at the beginning as
shown in Figure 3. Roughly speaking, in each session, a session
key is derived from the session ID, a random string chosen by a
participant, and the session key of the last session if it exists. To
obtain the random string encapsulated by the other participant, a
participant needs to generate a fresh secret key based on her/his
biometric characteristics in each session for implicit authentication.

More specifically, for the first session whose ID is sid0, the sender

P0 first chooses a random message 𝑠sid00 to generate the session key

𝑘sid00 , and then encapsulates 𝑠sid00 into 𝑐sid00 . When the receiver P1

gets online, she/he generates a secret key based on the biometric

characteristics to decapsulate 𝑐sid00 and obtain the session key 𝑘sid01 .
Then, the sender P1 launches the second session sid1 to send a

message to the receiver P0, where the new session key 𝑘sid11 is

generated by decapsulating 𝑐sid11 . The subsequent session keys could
be negotiated in the same manner, which provides the key rotation
property for our BAKE framework.

4.2 Secret Key from Iris

IrisCode [16] is the most widely used iris recognition method due
to its computational advantages, e.g., high matching speed and
accuracy. Over 60 million people are using IrisCode to perform
iris recognition and many other biometric algorithms are extended
from IrisCode [16]. Generally, iris recognition is simply achieved by
computing the Hamming distance between two IrisCodes. In BAKE,
IrisCode is suitable for instantiation by our first AFEM construction
that is illustrated in Section 3.2.

4.2.1 Iris Vector from IrisCode. An iris image is transformed into
random texture after localization, segmentation, and normalization,
which is then encoded into a 2048-bit stream [17]. To construct a
valid secret key for the AFEM construction in Section 3.2, a 2048-bit
IrisCode should be transformed into a vector. We naturally employ
a simple solution to shard a 2048-bit IrisCode into𝑚 elements that
compose an iris vector. As shown in Figure 4, we take the first
2048/𝑚 bits as the first element, and take the second 2048/𝑚 bits
as the second element, and so on. Finally, we obtain an iris vector
v = {𝑣1, . . . , 𝑣𝑚}.

4.2.2 Tolerating Iris Noise with Lattice. Due to capture deviation,
the decoding algorithm in Section 3.2 may fail even if the two iris
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01011...00010...10100.........10101...01010...01010
10101...01010...10101.........01001...00111...01100
11111...01111...01010.........10101...01011...10101
01001...01010...10100.........10010...10111...11010
10100...10100...10010.........10101...00101...11101
00101...01001...01000.........01001...01010...00001
01010...10101...00101.........01010...01010...11010
00101...01010...10010.........10100...01010...01010

...

...

...

Figure 4: An illustration of constructing an iris vector.

vectors are from the same user. To tackle this issue, we expect to
find an algorithm 𝑓 (·) to obtain the same output vectors u = u

′

from two slightly different iris vectors v and v
′, where u = 𝑓 (v),

u
′ = 𝑓 (v′). We enforce this goal by solving the 𝛾-CVP problem [1]

on a well-chosen lattice L with Babai’s algorithm [3]. Roughly
speaking, Babai’s algorithm maps all vectors close to a certain point
in a lattice to that point, where a lattice is a discrete set of points in
a vector space. Therefore, we employ this algorithm to eliminate
noises in our design.

Definition 4.1 (Lattice [29]). Let u1, . . . , u𝑚 ∈ R𝛿 be a set of
linearly independent vectors. The latticeL generated by u1, . . . , u𝑚
is the set of linear combinations of u1, . . . , u𝑚 ,

L = {𝑎1u1 + 𝑎2u2 + · · · + 𝑎𝑚u𝑚 : 𝑎1, 𝑎2, . . . , 𝑎𝑚 ∈ Z}.

Any set of independent vectors that generates L is a basis. The
number𝑚 of vectors in a basis is known as the dimension for L.

Definition 4.2 (𝛾-Closest Vector Problem [1]). For any approxima-

tion factor 𝛾 (𝑚) ≥ 1, given a target vector v ∈ R𝛿 and a basis for a

lattice L ⊂ R𝛿 , find u ∈ L satisfying

‖u − v‖ ≤ 𝛾 (𝑚) · 𝑑𝑖𝑠 (v,L),

where 𝑑𝑖𝑠 (v,L) = min
u∈L

‖u − v‖.

For efficiency, we first choose an orthonormal basis for L. Then
for any two slightly different target vectors v and v′, we invoke the
Babai’s algorithm to achieve

Babai(L, v) = u = u
′ = Babai(L, v′).

4.3 Secret Key from Fingerprint

Most researches take FingerCode to present the fingerprint, which
is a 640-dimensional vector of integers [11, 58]. However, Finger-
Code is rotation-variant such that rotating a fingerprint image
usually causes distinct FingerCodes as described in [58], which
is not suitable for our first AFEM construction in Section 3.2. In
addition, a 640-dimensional vector is not lightweight enough for
real-world applications.

Another fingerprint recognition method is based on minutiae-
based fingerprint presentation, which consists of a set of minutiae
points [35]. Specifically, a human fingerprint is a unique pattern of
ridges and valleys on the surface of an individual finger. Minutiae
points are defined as the positions of local discontinuities where
the ridge splits or ends, and are typically represented as: 1) an

Pointj,1
Pointj,2

Pointj,3

Pointj,4

Pointj
vecj,3

vecj,1

vecj,2
vecj,4

Figure 5: An illustration of constructing a fingerprint vector.

𝑋 -coordinate, 2) a 𝑌 -coordinate, 3) an orientation corresponding
to the angle between the minutiae ridge and the horizontal line
measured in degrees. To extract high-accuracy minutiae points
with varied-quality fingerprint images, the segmentation algorithm
first separates the foreground from the noisy background. Then,
the original ridge flow pattern is kept with an image enhancement
algorithm without introducing false information. Finally, minutiae
points are located accurately with binarized minutiae extraction.

Since minutiae-based fingerprint presentation produces a set
of minutiae points, it is suitable for instantiation by our second
AFEM construction in Section 3.3. Moreover, we note that a good
quality human fingerprint generally contains about 40 ∼ 100 minu-
tiae points and a partial human fingerprint contains much fewer
minutiae points (20 ∼ 30 approximately). The performance of our
BAKE protocol is significantly enhanced with the smaller finger-
print vector set 𝑛 compared to FingerCode.

4.3.1 Fingerprint Vector Set from Minutiae Points. To facilitate the
practicability of our BAKE protocol, we propose a minutiae-based
algorithm to produce a fingerprint vector set of size 𝑛, where 𝑛 is
the number of minutiae points that a human fingerprint contains.
Specifically, for 𝑛 minutiae points {Point1, . . . , Point𝑛} in the X-Y
coordinate space, a fingerprint vector set is constructed as depicted
in Algorithm 2. In this algorithm, every minutiae point is initialized
as the central point for exactly one time. Then, the straight-line
nearest 𝜇 points are chosen to form a structure as shown in Figure 5.

We take 𝜇 = 4 as an example. Let Point 𝑗 ( 𝑗 ∈ [1, 𝑛]) be the core
point and Point 𝑗,𝜌 (𝜌 ∈ [1, 4]) be the top 𝜇 straight-line nearest
points to Point 𝑗 . We define vec𝑗,𝜌 (𝜌 ∈ [1, 4]) as the vector from
Point 𝑗 to Point 𝑗,𝜌 . Let 𝑑 𝑗,𝜌 denote the length of the vector vec𝑗,𝜌
and 𝜙 𝑗,𝜔 (𝜔 ∈ [1, 6]) denote the angles. Then, we can represent
v𝑗,0 = (𝑑 𝑗,1, 𝑑 𝑗,2, 𝑑 𝑗,3, 𝑑 𝑗,4, 𝜙 𝑗,1, 𝜙 𝑗,2, 𝜙 𝑗,3, 𝜙 𝑗,4, 𝜙 𝑗,5, 𝜙 𝑗,6). Next, for
each point 𝑃𝑜𝑖𝑛𝑡 𝑗,𝜌 (𝜌 ∈ [1, 4]), find the nearest 𝜇 points 𝑃𝑜𝑖𝑛𝑡 𝑗,𝜌,𝜎
(𝜎 ∈ [1, 4]). We define vec𝑗,𝜌,𝜎 (𝜎 ∈ [1, 4]) as the vector from
𝑃𝑜𝑖𝑛𝑡 𝑗,𝜌 to 𝑃𝑜𝑖𝑛𝑡 𝑗,𝜌,𝜎 . Let 𝑑 𝑗,𝜌,𝜎 denote the length of the vector
vec𝑗,𝜌,𝜎 and 𝜙 𝑗,𝜌,𝜔 (𝜔 ∈ [1, 6]) denote the angles. Similarly, we can
represent the vector v𝑗,𝜌 = (𝑑 𝑗,𝜌,1, 𝑑 𝑗,𝜌,2, 𝑑 𝑗,𝜌,3, 𝑑 𝑗,𝜌,4, 𝜙 𝑗,𝜌,1, 𝜙 𝑗,𝜌,2,
𝜙 𝑗,𝜌,3, 𝜙 𝑗,𝜌,4, 𝜙 𝑗,𝜌,5, 𝜙 𝑗,𝜌,6) (𝜌, 𝜎 ∈ [1, 4]). Finally, a fingerprint vec-
tor is represented as v𝑗 = (v𝑗,0, v𝑗,1, v𝑗,2, v𝑗,3, v𝑗,4) that is concate-
nated with 50 values.

Since the above fingerprint processing method is based on the
relative position of minutiae points, rotating images does not affect
the fingerprint representation.

4.3.2 Tolerating Fingerprint Noise with Lattice. Similar to the iris
vector, a fingerprint vector also should be processed to mitigate
noise. To this end, we also employ a well-chosen lattice. We omit
the repeatability description and refer to Section 4.2.2 for details.
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Algorithm 2: Minutiae-based Fingerprint Vector Set Con-
structing Algorithm

1 for 𝑃𝑜𝑖𝑛𝑡 𝑗 ∈ {𝑃𝑜𝑖𝑛𝑡1, . . . , 𝑃𝑜𝑖𝑛𝑡𝑛} do
2 Set 𝑃𝑜𝑖𝑛𝑡 𝑗 as the center and find the nearest 𝜇 points
3 Construct 𝜇 vectors {vec𝑗,𝜌 }𝜇
4 Compute vector lengths {𝑑 𝑗,𝜌 }𝜇 for {vec𝑗,𝜌 }𝜇
5 Compute inter-vector angles {𝜙 𝑗,𝜔}𝜇·(𝜇−1)

2

in{vec𝑗,𝜌 }𝜇

6 Represent vector v𝑗,0 with{𝑑 𝑗,𝜌 }𝜇 and {𝜙 𝑗,𝜔 } 𝜇· (𝜇−1)
2

7 for 𝜌 ∈ [1, 𝜇] do
8 Set 𝑃𝑜𝑖𝑛𝑡 𝑗,𝜌 as the core and find the nearest 𝜇 points
9 Construct 𝜇 vectors {vec𝑗,𝜌,𝜎 }𝜇

10 Compute vector lengths {𝑑 𝑗,𝜌,𝜎 }𝜇 for {vec𝑗,𝜌,𝜎 }𝜇
11 Compute inter-vector angles {𝜙 𝑗,𝜌,𝜔 } 𝜇· (𝜇−1)

2

in

{vec𝑗,𝜌,𝜎 }𝜇
12 Represent vector v𝑗,𝜌 with{𝑑 𝑗,𝜌,𝜎 }𝜇 and

{𝜙 𝑗,𝜌,𝜔 } 𝜇· (𝜇−1)
2

13 Represent {vec𝑗,𝜌}𝜇 as vectorv𝑗 = (v𝑗,0,v𝑗,1,v𝑗,2,v𝑗,3,v𝑗,4)

5 SECURITY

We detail security analysis with Find-then-Guess (FtG) paradigm
in the Bellare-Pointcheval-Rogaway (BPR) model [7], where the
adversaryA is given access to oracles through the following oracle
queries. Particularly, users who hold biometrics (from a specific
biometric dictionary) are modeled as PPT algorithms that respond

to queries. P𝑖
0 (vs. P

𝑗
1 ) denotes instance 𝑖 (vs. 𝑗 ) of user P0 (vs. P1)

who executes the protocol multiple times with different partners
(we use vs. to simply describe the similar case of the other user).

Execute. This oracle models a passive A (e.g., an eavesdropper)
who receives all the transcripts of an honest execution between an

instance of a sender P𝑖
0 and an instance of a receiver P

𝑗
1 .

Send. This oracle models an active adversary A who can inter-
cept a message, modify it, create a new one, or simply forward it
to the intended party. For example, A could launch impersonation
attacks via Send queries. Particularly, we separate three kinds of

𝑆𝑒𝑛𝑑 oracles in BAKE, 𝑆𝑒𝑛𝑑0 (P
𝑖
0,P

𝑗
1 ) implies that P0 initiates an

execution with P1, 𝑆𝑒𝑛𝑑1 (P
𝑖
0,𝑚) and 𝑆𝑒𝑛𝑑2 (P

𝑗
1 ,𝑚) implies a mes-

sage𝑚 is sent byA to the instance P𝑖
0 and P

𝑗
1 , and outputs the first

and second message that the instance of the user who generates
upon receipt of the messages.

Reveal. This oracle models the misuse of session keys by a user,
and A gets the session key held by the user.

Test. This oracle models A is given either a session key or a
random value (depending on a choice bit 𝑏) and must distinguish

them. If no session key for instance P𝑖
0 (vs. P

𝑗
1 ) is defined , then

return the undefined symbol ⊥. Otherwise, return a guess bit 𝑏 ′ ∈
{0, 1} for the choice bit 𝑏.

Corrupt. This oracle models the client outputs the biometric
secret key, which does not reveal the internal state, but reveals the
secret key and can be made at any point during the protocol.

Advantage of the adversary. Freshness oracle is defined to
restrict the queries to a target session. The security experiment is
performed as a game between a challenger C and an adversary A

based on BAKE with a security parameter 𝜆. Concretely, C first

initializes the whole system and realizes all oracles, then gives all
public information to A, A then interacts with C via a series of
queries on 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 , 𝑆𝑒𝑛𝑑 , 𝑅𝑒𝑣𝑒𝑎𝑙 , and 𝐶𝑜𝑟𝑟𝑢𝑝𝑡 . In the meanwhile,
A issues a 𝑇𝑒𝑠𝑡 query, and keeps querying other oracles afterward
as before. Finally,A terminates this experiment and outputs a guess
bit𝑏 ′ for the choice bit𝑏 in𝑇𝑒𝑠𝑡 . For BAKE, an instance of the sender
represents an online attack if both the following cases are true at the
time of the𝑇𝑒𝑠𝑡 query, (1) at some point,A queried 𝑆𝑒𝑛𝑑1 (P

𝑖
0, ∗) (vs.

𝑆𝑒𝑛𝑑2 (P
𝑗
1 , ∗)); (2) at some point,A queried𝑇𝑒𝑠𝑡 (P𝑖

0) (vs.𝑇𝑒𝑠𝑡 (P
𝑗
1 )).

The number of online attacks represents a bound on the number
of biometric secret keys that A could have tested in an online
fashion. A PPT A may succeed with probability 1 by trying all
biometric secret keys if the size of the biometric dictionary is small.
Therefore, A is only said to have succeeded if A asks a single𝑇𝑒𝑠𝑡
query, outputs a guess bit 𝑏 ′ such that 𝑏 ′ = 𝑏. The advantage of A
in attacking BAKE is formally defined by

AdvA(𝜆) = |2 · Pr[𝑏 = 𝑏 ′] − 1|. (1)

Definition 5.1. BAKE is said to be secure if for every biometric
dictionary 𝐷 with size ‖𝐷 ‖ and for all PPT A making at most 𝑄𝑠

online dictionary attacks (i.e., the number of 𝑆𝑒𝑛𝑑 queries), it holds
that AdvA(𝜆) ≤ 𝑄𝑠/‖𝐷 ‖ + 𝑛𝑒𝑔𝑙 (𝜆).

Remark 1. Fuzzy aPAKE [21] is using an ideal cipher as a block

cipher that takes as input a plaintext or a ciphertext. In our solution,

we instantiate the block cipher using our proposed AFEM instead.

Theorem 5.2. BAKE is secure with the advantage AdvA(𝜆) ≤

𝑄𝑠/‖𝐷 ‖ + 𝑛𝑒𝑔𝑙 (𝜆) if AFEM is semantic secure and assuming all

collision-resistant hash functions are random oracles H , where 𝑄𝑠

is the number of the online attacks (i.e., the number of 𝑆𝑒𝑛𝑑 queries)

and the bit-length of the output ofH is ℓ .

Proof of Theorem 5.2. We use A to construct a simulator S that
controls all oracles to whichA has the ability to access. S executes
the Init phase including selecting biometric characteristics for each
user, and answers A’s queries as defined in the 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 , 𝑇𝑒𝑠𝑡 , and
𝑆𝑒𝑛𝑑 oracles. Thus, A succeeds in breaking the semantic security
of AFEM if it can guess the bit 𝑏 that S uses during the 𝑇𝑒𝑠𝑡-query.
The proof uses a sequence of hybrids, starting from the real case
and ending at the ideal (or simulation) case where the advantage

of A is 0. Let Adv
Hy𝑖
A

(𝜆) denote the advantage of A in the hybrid

Hy.𝑖 . To prove the desired bound on AdvA(𝜆) = Adv
Hy0
A

(𝜆), we
bound the effect of each change in the hybrid on the advantage of

A, and then illustrate that Adv
Hy7
A

(𝜆) ≤ 𝑄𝑠/‖𝐷 ‖.

Hy.0. A real hybrid follows BAKE specification. Hy.0 corre-
sponds to the real attack that the honest users have their key-pair
(𝑝𝑘0, 𝑠𝑘0) (vs. (𝑝𝑘1, 𝑠𝑘1)). 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 and 𝑆𝑒𝑛𝑑 are answered exactly
as the honest users with their keys; 𝑅𝑒𝑣𝑒𝑎𝑙 to an instance of the

participant P𝑖
0 (vs. P

𝑗
1 ) is answered by issuing the session key (i.e.,

𝑘0←𝐻 (𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1,𝑠
′
0,𝑠1) vs. 𝑘1 = 𝐻 (𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠0, 𝑠

′
1)) that

is generated by P𝑖
0 (vs. P

𝑗
1 ) during the execution of the protocol

(or ⊥ if no session key is set); and 𝑇𝑒𝑠𝑡 to a fresh instance P𝑖
0 (vs.

P
𝑗
1 ) is answered after flipping a coin 𝑏, by either the output of

𝑅𝑒𝑣𝑒𝑎𝑙 (P𝑖
0) (vs. 𝑅𝑒𝑣𝑒𝑎𝑙 (P

𝑗
1 )) or 𝑠𝑘

$
← {0, 1}∗. By definition, we

have AdvA(𝜆) = Adv
Hy0
A

(𝜆) = |2 · Pr[𝑏 = 𝑏 ′] − 1|.
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Hy.1. Hy.1 is identical to Hy.0 on simulating all the instances
for 𝑆𝑒𝑛𝑑 , 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 , 𝑇𝑒𝑠𝑡 and 𝐶𝑜𝑟𝑟𝑢𝑝𝑡 queries, except that we sim-
ulate the random oracle H on new queries (𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠

′
0, 𝑠1)

and (𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠0, 𝑠
′
1), and we obtain two associated random

outputs as session keys, either 𝑘0 ← 𝐻 (𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠
′
0, 𝑠1) or

𝑘1 ← 𝐻 (𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠0, 𝑠
′
1) in all of the sessions. For keeping con-

sistent, the corresponding valid records
(
(𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠

′
0, 𝑠1), 𝑘0

)
and

(
(𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠0, 𝑠

′
1), 𝑘1

)
are stored in the list Λ𝐻 that is used

to give the same answer if the same query is asked twice. This hy-
brid excludes the collision, the protocol halts and A fails if any
instance chooses any input of the random oracle that has been used.
This is a perfect simulation of the random oracle H , and we have

Claim 1. |Adv
Hy0
A

(𝜆) − Adv
Hy1
A

(𝜆) | is negligible.

Proof. This claim is guaranteed by the collision resistance and
one-wayness of the hash function. All executions will be halted if a
collision occurs in the transcript

(
(𝑝𝑘0, 𝑐0), (𝑝𝑘1, 𝑐1)

)
since the in-

puts 𝑝𝑘0, 𝑐0, 𝑝𝑘1, 𝑐1 are simulated and chosen uniformly at random.
Thus, the collision in the transcript is still regarded as negligi-

ble for convenience, and the probability is at most Adv
Hy0
A

(𝜆) ≤

Adv
Hy1
A

(𝜆) +
(𝑄𝑠+𝑄𝑒 )

2

2ℓ
via the birthday paradox, where 𝑄𝑠 and 𝑄𝑒

are the numbers of 𝑆𝑒𝑛𝑑 and 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 queries, and ℓ is the bit-length
of the output ofH . �

Hy.2. 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 queries between compatible users, before corrup-
tion. In this hybrid, we first deal with the passive attacks between
two compatible users because 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 models the behavior of the
passive adversary. Indeed, there is a simple query to the 𝐸𝑥𝑒𝑐𝑢𝑡𝑒
oracle (in either Hy.3 or Hy.2), and the transcript (𝑝𝑘0, 𝑐0, 𝑝𝑘1, 𝑐1)

is returned to A. In order to respond to 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (P𝑖
0,P

𝑗
1 ), the pub-

lic key 𝑝𝑘0 ← AFEM.PubGen(𝑠𝑘0) for the sender P0 (vs. 𝑝𝑘1 ←

AFEM.PubGen(sk1) for the receiver P1) with the associated cor-
rect secret key 𝑠𝑘0 derived from the biometric characteristics (i.e.,
SK) for the sender P0 (vs. 𝑠𝑘1 for the receiver P1) is replaced by

encrypting a random sampled 𝑠𝑘0 (vs. 𝑠𝑘1) from SK . Additionally,
the message 𝑠0 for P0 (vs. the message 𝑠1 for P1) is encrypted un-

der a dummy public key 𝑝𝑘𝑖 ← AFEM.PubGen(𝑠𝑘𝑖 ) (for 𝑖 = 0, 1)
instead of 𝑝𝑘𝑖 ← AFEM.PubGen(𝑠𝑘𝑖 ). Thus, we obtain 𝑐0 ←

AFEM.Enc(𝑝𝑘1, 𝑠0) for P0 (vs. 𝑐1 ← AFEM.Enc(𝑝𝑘0, 𝑠1) for P1).

Next, random session keys 𝑘0 ← {0, 1}ℓ for P0 and 𝑘1 ← {0, 1}ℓ

for P1 are drawn uniformly, and the list Λ
Hy.2
𝐻 stores the records(

(𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠0, 𝑠
′
1), 𝑘0

)
and

(
(𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠1, 𝑠

′
0), 𝑘1

)
. Thus,

we consider A wins this hybrid if Λ
Hy.2
𝐻 ∩ Λ𝐻 ≠ ∅. To summarize

what has been mentioned above, we utilize Hy.2 to exclude pas-
sive attacks between compatible users by 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 , where Hy.2 is
indistinguishable from Hy.1 unless the two aforementioned records
have been queried toH . Thus, we have

Claim 2. |Adv
Hy1
A

(𝜆) − Adv
Hy2
A

(𝜆) | is negligible.

Proof. This indistinguishability proof is guaranteed by AFEM
that has been proved in Section 3.2.4, and under the decisional-
LWE assumption and random oracle, the adversary B cannot dis-

tinguish the public key 𝑝𝑘𝑖 for 𝑖 = 0, 1 generated in Hy.2 from
the public key 𝑝𝑘𝑖 for 𝑖 = 0, 1 generated in previous hybrid. Ad-
ditionally, the message 𝑠0 for P0 (vs. the message 𝑠1 for P1) is

encrypted under a dummy public key 𝑝𝑘𝑖 instead of the real 𝑝𝑘𝑖 ←

AFEM.PubGen(𝑠𝑘𝑖 ), thus, 𝑐0 ← AFEM.Enc(𝑝𝑘1, 𝑠0) for P0 (vs.

𝑐1 ← AFEM.Enc(𝑝𝑘0, 𝑠1) for P1). This is indistinguishability proof
under the semantic security property of the AFEM scheme, and
the adversary B cannot distinguish the encapsulated messages
generated in Hy.2 and Hy.1. �

Hy.3. In this hybrid, we continue to deal with passive attacks
between two incompatible users. Hy.3 is identical to Hy.2 except
that we modify the answered way of 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 on how to compute
the session key. The transcript is computed in the same way as
Hy.2 but with independent two session keys. We use the secret

sampled 𝑘0 and 𝑘1 from a uniform to replace the random oracle
H for computing the session keys (i.e., 𝑘0 and 𝑘1) in all sessions
generated via 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 . Below, the record (𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠0, 𝑠

′
1) is

truncated to (𝑠0, 𝑠
′
1) and for the sake of illustration, where 𝑠∗1 is

obtained from AFEM.Dec(𝑠𝑘 ′0, 𝑐
′
1) if 𝑐

′
1 ← AFEM.Enc(𝑝𝑘0, 𝑠1) can

be decrypted correctly, otherwise, 𝑠∗1 is sampled from a uniform dis-
tribution. Then, the session key 𝑘0 = 𝐻 (𝑠0‖𝑠

∗
1) for P0 is replaced by

a random 𝑘0 ← {0, 1}ℓ . Likewise, we use 𝑘1 for the receiver instead
of 𝑘1 = 𝐻 (𝑠∗0 ‖𝑠1) at this stage, where 𝑠

∗
0 ← AFEM.Dec(𝑠𝑘 ′1, 𝑐

′
0) if

𝑐 ′0 ← AFEM.Enc(𝑝𝑘1, 𝑠0) can be decrypted correctly, otherwise, 𝑠∗0
is sampled from a uniform distribution. Thus, we have

Claim 3. |Adv
Hy2
A

(𝜆) − Adv
Hy3
A

(𝜆) | is negligible.

Proof. In the aforementioned hybrid, A’s probability of guess-
ing 𝑏 in 𝑇𝑒𝑠𝑡 oracle is exactly 1/2 if 𝑇𝑒𝑠𝑡 query is made to a fresh
instance that was activated via 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 . In the following Hybrids,
we deal with active attacks via 𝑆𝑒𝑛𝑑 , where A has possibly gener-
ated the inputs of a 𝑆𝑒𝑛𝑑 query. To this end, 𝑆𝑒𝑛𝑑 is modified so that
its output is chosen uniformly at random and independently of the

biometric secret key. Notably, 𝑆𝑒𝑛𝑑0 (P
𝑖
0,P

𝑗
1 ) is the start-query for

a user to initiate an execution of BAEK, followed by 𝑆𝑒𝑛𝑑1 (P
𝑗
1 , 𝑝𝑘0)

(vs. 𝑆𝑒𝑛𝑑1 (P
𝑖
0, 𝑝𝑘1)) and 𝑆𝑒𝑛𝑑2 (P

𝑗
1 , 𝑐0) (vs. 𝑆𝑒𝑛𝑑2 (P

𝑖
0, 𝑐1)). �

Hy.4. We deal with active attacks using 𝑆𝑒𝑛𝑑2 (P
𝑗
1 , 𝑐0) between

compatible users before corruption. 𝑆𝑒𝑛𝑑2 (P
𝑗
1 , 𝑐0) represents that

A sends 𝑐0 toP0.Wemodify the behavior ofP𝑖
0 to 𝑆𝑒𝑛𝑑2 (P

𝑖
0, 𝑐1). At

this stage, 𝑐1 for P
𝑖
0 is adversarially generated without knowing the

secret 𝑠𝑘0. Upon receiving 𝑆𝑒𝑛𝑑2 (P
𝑖
0, 𝑐1), S checks whether 𝑐1 for

the instance P𝑖
0 is either valid or invalid. If 𝑐1 is valid, then outputs

𝑐0 and the session key 𝑘0 is assigned with a special value. If 𝑐1 is

invalid, then outputs 𝑐0 and S samples 𝑠 ′1 and 𝑘
∗
0 from a uniform

and stores the record (𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠0, 𝑠 ′1, 𝑘
∗
0 ). The inconsistency

can be detected if H has been asked with same 𝑐1 and 𝑠 ′1. More
generally, A wins if a collision occurs. 𝑆𝑒𝑛𝑑2 (P

𝑖
0, 𝑐1) queries are

proceeded in a similar way, and we omit it here. Thus,

Claim 4. |Adv
Hy3
A

(𝜆) − Adv
Hy4
A

(𝜆) | is negligible.

Proof. If 𝑐0 is generated byA who used the public key 𝑝𝑘1 with
an associated secret key 𝑠𝑘1, and the regenerated secret key is close
to the previous one, e.g., 𝑑𝑖𝑠 (𝑠𝑘1, 𝑠𝑘

′
1) < 𝜏 , then the decapsulation

oracle will output a correct value. Thus, S can declare A succeeds
and terminates the hybrid. Otherwise, S selects a session key from
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a uniform distribution. More generally, if 𝑐0 is generated by A

before corruption, then S queries the decapsulation oracle and

obtains 𝑠 ′0 ← AFEM.Dec(sk′1, 𝑐0). Next, if 𝑠
′
0 = 𝑠

′
0, thenS declares

A succeeds. This case can only increase the advantage of A. If

𝑠 ′0 ≠ 𝑠
′
0, then S sets a random sampled key from a uniform instead

of 𝑘0. This case introduces a negligible difference, guaranteed by
the pseudorandomness of random oracle. �

Hy.5. We modify 𝑆𝑒𝑛𝑑2 between compatible users again to ex-

clude corruptions. To answer 𝑆𝑒𝑛𝑑2 (P
𝑖
0, 𝑐1) (vs. 𝑆𝑒𝑛𝑑2 (P

𝑗
1 , 𝑐0)) where

𝑐1 (vs. 𝑐0) was used, 𝑆𝑒𝑛𝑑2 (P
𝑖
0, 𝑐1) (vs. 𝑆𝑒𝑛𝑑2 (P

𝑗
1 , 𝑐0)) outputs 𝑐0 (vs.

𝑐1). To get a session key 𝑘0 (vs. 𝑘1), S queriesH with the appropri-
ate (𝑝𝑘0, 𝑝𝑘1, 𝑐0, 𝑐1, 𝑠0, 𝑠

′
1), if there is a record, A wins. Otherwise,

the session keys are set as 𝑘∗0 , 𝑘
∗
1 ← {0, 1}ℓ .

Claim 5. |Adv
Hy4
A

(𝜆) − Adv
Hy5
A

(𝜆) | is negligible.

Proof. This proof depends on the security of AFEM that is
proved in Theorem 3.2. A issues the 𝑆𝑒𝑛𝑑 query, and S’s behavior
is defined in Definition 3.1 and proceeds as follows:

(1) S is given 𝑝𝑘0 and 𝑐0 (vs. 𝑝𝑘1 and 𝑐1).
(2) S generates 𝑠 , collects and generates 𝑠𝑘 ′0 (vs. 𝑠𝑘

′
1).

(3) S responds to 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 queries by generating (𝑝𝑘0, 𝑐0, 𝑝𝑘1, 𝑐1),
where𝑝𝑘 (𝑝𝑘0 and 𝑝𝑘1) is computed by invokingAFEM.PubGen(·)
on input a dummy 𝑠𝑘 , and 𝑐 (𝑐0 and 𝑐1) is computed by invoking

AFEM.Enc(·) on input 0 under the dummy 𝑝𝑘 . The matching
session keys are chosen uniformly at random.

(4) S responds to the 𝑖-th 𝑆𝑒𝑛𝑑0 queries by submitting an 𝑠𝑘 to the
PubGen oracle, and receives a public key 𝑝𝑘 , then gives it to A.

(5) S responds to 𝑆𝑒𝑛𝑑1 (𝑝𝑘) and 𝑆𝑒𝑛𝑑2 (𝑐) by checking whether
(𝑝𝑘, 𝑐) is previously used or adversarially generated. If it is the
former, then the session key is calculated as the protocol de-
scription. Otherwise, the session key is chosen uniformly if
𝑑𝑖𝑠 (𝑠𝑘0, 𝑠𝑘

′
0) > 𝜏 , and S declares that A succeeds and termi-

nates the hybrid if 𝑑𝑖𝑠 (𝑠𝑘0, 𝑠𝑘
′
0) < 𝜏 .

(6) At the end of this hybrid, S outputs 1 if and only if A succeeds.

Let 𝑏 be a choice bit defined in Equation.1. If 𝑏 = 0, then the view
of A in the above execution with S is identical to the view of A
in Hy.4. If 𝑏 = 1, the view of A in the above execution with S is
identical to the view of A in Hy.5. Thus, this claim holds. �

Hy.6. We modify 𝑆𝑒𝑛𝑑1 (P
𝑗
1 , 𝑝𝑘0) between incompatible users

before a 𝐶𝑜𝑟𝑟𝑢𝑝𝑡 query, where the public key 𝑝𝑘0 is generated
by taking as input an incorrect secret key 𝑠𝑘0, and the output of

𝑆𝑒𝑛𝑑1 (P
𝑗
1 , 𝑝𝑘0) is 𝑝𝑘1 ← {0, 1}∗, we set the session keys 𝑘∗0 , 𝑘

∗
1 ←

{0, 1}ℓ . 𝑆𝑒𝑛𝑑1 (P
𝑗
1 , 𝑝𝑘0) is proceeded in a similar manner. Thus,

Claim 6. |Adv
Hy5
A

(𝜆) − Adv
Hy6
A

(𝜆) | is negligible.

Proof. This proof is implied by Claim 2, the difference is that

the dummy 𝑝𝑘1 here is sampled from a uniform distribution, but in
Claim 2 it is computed by inputting a random secret key. Thus, we
omit the redundant analysis here. �

Hy.7. The secret keys/public keys are not known at the beginning,
but just at the corruption time or to check whether A wins when
A guesses the correct secret key at the very end only.

• 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (P𝑖
0,P

𝑗
1 ): S randomly selects 𝑐0 (vs. 𝑐1) from a uniform

distribution. If they are compatible, they are given the same
random session key 𝑘0 = 𝑘1. Otherwise, they are given two
independent random keys 𝑘0, 𝑘1 ← {0, 1}ℓ .

• 𝑆𝑒𝑛𝑑0 (P
𝑖
0,P

𝑗
1 ) implies that the instance of P𝑖

0 initiates an execu-
tion of BAKE, andS selects a random 𝑠𝑘𝑖 fromSK and calculates
the public key 𝑝𝑘𝑖 ← AFEM.PubGen(𝑠𝑘𝑖 ).

• 𝑆𝑒𝑛𝑑1 (P
𝑗
1 , 𝑝𝑘0) (vs. 𝑆𝑒𝑛𝑑1 (P

𝑖
0, 𝑝𝑘1)) simulates the behavior of

P
𝑗
1 (vs. P𝑖

0) before a corruption. S selects the secret key 𝑠𝑘1
(vs. 𝑠𝑘0), and randomly selects a public key 𝑝𝑘1 ← {0, 1}∗ (vs.
𝑝𝑘0 ← {0, 1}∗). Otherwise, S selects 𝑠𝑘1 (vs. 𝑠𝑘0) and sets 𝑝𝑘1 ←
AFEM.PubGen(𝑠𝑘1) (vs. 𝑝𝑘0 ← AFEM.PubGen(𝑠𝑘0)).

• 𝑆𝑒𝑛𝑑2 (P
𝑖
0, 𝑐1) (vs. 𝑆𝑒𝑛𝑑2 (P

𝑗
1 , 𝑐0)) simulates the behavior of P𝑖

0

(vs. P
𝑗
1 ) in the following cases.

– Before a corruption, S outputs a randomly sampled session
key 𝑘0 (vs. 𝑘1).

– After a corruption, but 𝑐1 (vs. 𝑐0) has been generated before
corruption. Particularly, S selects the message 𝑠1 (vs. 𝑠0) ran-
domly, and simulates the ciphertext by sampling 𝑐0 (vs. 𝑐1)
randomly. After that, S cannot decrypt 𝑐0 (vs. 𝑐1) to a correct
value under the re-generated secret key 𝑠𝑘 ′0 (vs. 𝑠𝑘

′
1), and S

samples a randomly chosen plaintext. Finally, S asks for the
session key 𝑘0 (vs. 𝑘1) from H on the pair (𝑠0, 𝑠

′
1) (vs. (𝑠

′
0, 𝑠1)).

– After a corruption,S selects a message 𝑠1 (vs. 𝑠0) randomly and
invokes 𝑐0 ← AFEM.Enc(𝑝𝑘1, 𝑠0) (vs. 𝑐1 ← AFEM.Enc(𝑝𝑘0, 𝑠1)).
After that, S decapsulates 𝑐0 (vs. 𝑐1) to a correct value under
the re-generated secret key 𝑠𝑘 ′0 (vs. 𝑠𝑘

′
1). Finally, S asks for the

session key 𝑘0 (vs. 𝑘1) from H on the pair (𝑠0, 𝑠
′
1) (vs. (𝑠

′
0, 𝑠1)).

• 𝐶𝑜𝑟𝑟𝑢𝑝𝑡 (P𝑖
0) (vs. 𝐶𝑜𝑟𝑟𝑢𝑝𝑡 (P

𝑗
1 )) implies that if this is the first

corruption query involving P𝑖
0 (vs. P

𝑗
1 ), one could first obtain a

secret key 𝑠𝑘0 (vs. 𝑠𝑘1), then define the public key 𝑝𝑘0 (vs. 𝑝𝑘1)
via the algorithm AFEM.PubGen(𝑠𝑘0) (vs. AFEM.PubGen(𝑠𝑘1)).

• 𝑇𝑒𝑠𝑡 (𝑏) is answered using the defined session key according to
the choice bit 𝑏.

At the very end, or at the time of corruption, the biometric charac-
teristics are selected at random, and corresponding public keys are
calculated via the secret keys. As a consequence, we have

Claim 7. |Adv
Hy6
A

(𝜆) − Adv
Hy7
A

(𝜆) | is negligible.

Proof. This claim is guaranteed by the security of AFEM. �

In the final hybrid,A’s view is independent of the real biometric
secret keys chosen by S until the following cases happen. 1). A

queries 𝑅𝑒𝑣𝑒𝑎𝑙 (P𝑖
0) or𝑇𝑒𝑠𝑡 (P

𝑖
0) (vs. 𝑅𝑒𝑣𝑒𝑎𝑙 (P

𝑗
1 ) or𝑇𝑒𝑠𝑡 (P

𝑗
1 )) after

𝑆𝑒𝑛𝑑1 (P
𝑖
0, 𝑝𝑘1) (vs. 𝑆𝑒𝑛𝑑1 (P

𝑗
1 , 𝑝𝑘0)) for a malicious and valid 𝑝𝑘1

(vs. 𝑝𝑘0); 2) A queries 𝑅𝑒𝑣𝑒𝑎𝑙 (P𝑖
0) or 𝑇𝑒𝑠𝑡 (P

𝑖
0) (vs. 𝑅𝑒𝑣𝑒𝑎𝑙 (P

𝑗
1 ) or

𝑇𝑒𝑠𝑡 (P
𝑗
1 )) after 𝑆𝑒𝑛𝑑2 (P

𝑖
0, 𝑐1) (vs. 𝑆𝑒𝑛𝑑2 (P

𝑗
1 , 𝑐0)) for a malicious

and valid 𝑐1 (vs. 𝑐0). Thus, it holds that Adv
Hy7
A

(𝜆) ≤ 𝑄𝑠/‖𝐷 ‖,

the way the session keys are defined is exactly the same as in the
random or the real cases (chosen at random before corruption). The

probability 𝑏 = 𝑏 ′ is exactly Adv
Hy0
A

(𝜆) ≤ 𝑄𝑠/‖𝐷 ‖ + 𝑛𝑒𝑔𝑙 (𝜆). This
concludes the proof of Theorem 5.2 with Claim 1 to 7.
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Table 1: Asymptotic Comparison, where 𝑛 denotes the bit-length of a biometric string, 𝑛 denotes the size of a biometric vector

set, and 𝜁 is a constant. A round means an interaction between two participants, i.e., one participant sends a message to the

other, who then sends another message back. For the researches [19] and [21], the number of rounds is evaluated based on the

building blocks (e.g., aPAKE is regarded as one round), i.e., the actual number of rounds depends on the instantiations, which

may be bigger than the number presented in this table.

Scheme Technique Round Multiplication Exponentiation Hash
Secret Symmetric

Sharing Encryption

fPAKE-1 [19]
sender

Garbled Circult 5
− 3𝑛 + 𝜁 4𝑛 + 𝜁 − −

receiver − 3𝑛 + 𝜁 4𝑛 + 𝜁 − −

fPAKE-2 [19]
sender PAKE +

2
− 2𝑛 + 𝜁 𝑛 𝜁 −

receiver Secret Sharing − 2𝑛 + 𝜁 𝑛 𝜁 −

fuzzy sender Secret Sharing +
2

2𝑛 + 𝜁 4𝑛 + 𝜁 3𝑛 + 𝜁 1 2𝑛 + 𝜁
aPAKE-1 [21] receiver Oblivious Transfer 𝑛 + 𝜁 4𝑛 + 𝜁 2𝑛 + 𝜁 − 2𝑛 + 𝜁

fuzzy sender
aPAKE 2

4𝑛 + 𝜁 5𝑛 + 𝜁 4𝑛 + 𝜁 − 2𝑛
aPAKE-2 [21] receiver 2𝑛 + 𝜁 5𝑛 + 𝜁 2𝑛 + 𝜁 − 𝑛

BAKE-1
sender Random

1
− 𝜁 − − −

receiver Linear Codes 𝜁𝑛2 𝜁 𝜁 − −

BAKE-2
sender Secret Sharing +

1
𝑛2 2𝑛 + 𝜁 𝜁 𝜁 −

receiver Polynomial Interpolation 𝜁𝑛3 2𝑛 + 𝜁 𝜁 𝜁 −

Table 2: Running Time (ms) on IrisCode and FVC2004.

IrisCode FVC2004

Case 1 Case 2 Case 3 Case 4 DB1 DB2 DB3 DB4

𝑚/𝑛 16 32 64 128 95 91 138 150

PubGen 54 55 56 58 29 28 43 45

Enc 101 110 111 110 151 148 221 232

Dec 71 79 85 116 315 293 598 631

For asynchronous BAKE, the security proof is identical to syn-
chronous BAKE except for the Session sid0, which is reduced to
the security of AFEM.

6 EVALUATION

We show the asymptotic comparison with the state-of-the-art solu-
tions and the experimental results on our implementation.

6.1 Asymptotic Comparison

The asymptotic comparison with the state-of-the-art solutions is
shown in Table 1, where our BAKE protocol for biometric vector is
denoted as BAKE-1 and the one for biometric vector set is denoted as
BAKE-2. Note that fPAKE [19] is a symmetric primitive, which gives
biometric characteristics away to the receiver and thus dissatisfies
the design goal of biometric privacy, while fuzzy aPAKE [21] is an
asymmetric primitive that has similar goals to BAKE.

BAKE-1, fPAKE (instantiated as in [19]), and fuzzy aPAKE (in-
stantiated as suggested in [21]) are designed for an 𝑛-bit string,
while BAKE-2 is designed for a set of cardinal 𝑛. The computation
complexities of fPAKE-2 and fuzzy aPAKE-2 heavily rely on the un-
derlying PAKE and aPAKE solutions. Therefore, in all the solutions
for an 𝑛-bit string, BAKE-1 is the most efficient one in terms of the
computation complexity. Moreover, among these solutions, only

Table 3: Communication Cost (KB) on IrisCode and

FVC2004.

IrisCode FVC2004

Case 1 Case 2 Case 3 Case 4 DB1 DB2 DB3 DB4

𝑚/𝑛 16 32 64 128 95 91 138 150
𝑝𝑘 0.813 3.094 12.156 48.281 2.969 2.844 4.313 4.688
𝑐 0.844 3.125 12.188 48.313 2.672 2.566 3.867 4.219

BAKE-1 and BAKE-2 are one-round protocols that are suitable for
the asynchronous secure messaging setting.

6.2 Experiments

6.2.1 Implementation. To measure the performance of our BAKE
protocols, we implemented a prototype in Python using a laptop
computer, with the Intel Core i5-8300H CPU @ 2.30 GHz and 8 GB
RAM. The group in both solutions is implemented with the elliptic
curve Curve25519. BAKE-1 is implemented with the random linear
code provided in Fuller et al. [24] and BAKE-2 is instantiated with
Feldman’s secret sharing [23]. To ensure the biometric keys from
the same user are considered close, and the ones from different
users are considered distant, the parameters (e.g., 𝜏) were chosen
by conducting experiments to obtain appropriate accuracy.

6.2.2 Results on IrisCode and FVC2004. We first investigate the per-
formance of our BAKE protocols on two realistic datasets. For iris,
we transform an IrisCode into 4 cases: a 16-dimensional vector, a 32-
dimensional vector, a 64-dimensional vector, and a 128-dimensional
vector. For fingerprint, we use four databases from the Third In-
ternational Fingerprint Verification Competition (FVC2004) [36],
in which DB1 and DB2 involve a similar size of fingerprint vector
set, while the distorted DB3 and synthetic DB4 are extracted more
noisy points, leading to big size 𝑛. The fingerprint images are pre-
processed with the OpenCV library and the minutiae points are

Session 10B: Crypto and Protocol Security  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2628



20 40 60 80 100 120 140
PubGen 54.057 55.956 55.188 55.013 54.515 55.376 56.227
Enc 111.12 110.27 110.59 110.69 109.58 111.45 112.45
Dec 65.032 74.135 83.149 91.796 102.10 111.90 120.22
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Figure 6: Running time of the AFEM

construction for biometric vector, as

the size of biometric vector increases

from 20 to 140.

100 200 300 400 500 600 700 800 900 100
0

PubGen 55 56 58 60 62 68 68 72 77 81
Enc 110 110 112 112 110 110 110 111 110 110
Dec 102 155 222 276 369 541 561 664 783 793
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Figure 7: Running time of the AFEM

construction for biometric vector, as

the size of biometric vector increases

from 100 to 1000.
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Figure 8: Running time of different op-

erations in Dec for biometric vector, as

the size of biometric vector increases

from 20 to 1000.

20 40 60 80 100 120 140
PubGen 6.359 12.723 19.026 25.142 31.630 37.700 43.677
Enc 62.001 78.914 98.905 124.91 154.69 189.50 223.99
Dec 22.619 65.144 126.82 211.93 320.00 446.11 611.70
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Figure 9: Running time of the AFEM

construction for biometric vector set,

as the size of biometric vector set in-

creases from 20 to 140.

100 200 300 400 500 600 700 800 900 100
0

PubGen 0.03 0.06 0.09 0.13 0.16 0.19 0.22 0.25 0.28 0.31
Enc 0.15 0.35 0.62 0.99 1.45 2.02 2.69 3.49 4.37 5.35
Dec 0.32 1.25 2.74 4.79 7.24 10.4 14.2 18.7 23.5 29.2
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Figure 10: Running time of the AFEM

construction for biometric vector set,

as the size of biometric vector set in-

creases from 100 to 1000.
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Figure 11: Running time of different

operations in Enc for biometric vector

set, as the size of biometric vector set

increases from 20 to 1000.

extracted as coordinate values. For Algorithm 2, we choose 𝜇 = 4,
i.e., each fingerprint vector is composed of 50 4-bit values.

The computation cost of each algorithm in our BAKE protocols
is shown in Table 2. Our protocol on IrisCode is more efficient
than that on FVC2004, since there is only one ElGamal-like oper-
ation in the AFEM construction for biometric vector while there
are 𝑛 ElGamal-like operations in the AFEM construction for bio-
metric vector set. However, both protocols are suitable for practical
applications from the view of computation overhead.

The communication cost consists of transmitting the public key
𝑝𝑘 in the KeyGen phase and transmitting the encapsulated message
𝑐 in the AKE phase, as shown in Table 3. Again, we can conclude
that the two protocols are efficient in practice, even for the resource-
limited network, in terms of the communication overhead.

6.2.3 Further Results. We then investigate the computation cost
of our BAKE protocols with the size of biometric secret keys.

The time consumption of algorithms in BAKE-1 is illustrated in
Figure 6 and Figure 7. The running time of PubGen is the smallest
and increases slowly and the curve of Enc is smooth as the size of
the biometric vector𝑚 grows since Enc only involves an ElGamal-
like encryption operation. For Dec, the time consumption grows
substantially as 𝑚 increases and exceeds 0.5 seconds when 𝑚 =
600, which is similar to the general biometric authentication [53].

Figure 8 further depicts the detailed time consumption of Dec, in
which the decoding algorithm is dominated when𝑚 ≥ 200.

The time consumption of algorithms in BAKE-2 is shown in
Figure 9 and Figure 10, which implies that the running time of
these three algorithms increases as the size of biometric vector set
𝑛 grows. The time consumption of Enc and Dec exceeds 1 second
when𝑛 = 500 and𝑛 = 200, respectively, which is more efficient than
existing tow-factor authentication methods (at least 13 seconds on
average) [41]. We also experimented with different operations in
Enc and Dec, as shown in Figure 11 and Figure 12. As 𝑛 increased,
the most time-consuming operation in Enc is the polynomial inter-
polation. In Dec, secret reconstruction and polynomial evaluation
are time-consuming operations when 𝑛 is big.

6.3 Comparison

We compare the computation and communication costs of BAKE-1
and BAKE-2 with the recent fuzzy aPAKE constructions [21], de-
noted as fuzzy aPAKE-1 and fuzzy aPAKE-2. From a practical point
of view, we set𝑚 = 64 for the irises in BAKE-1 and employ the
average size of fingerprint vector set in DB1, i.e., 𝑛 = 95, in BAKE-2.
Fuzzy aPAKE-1 and fuzzy aPAKE-2 employ an iris as the “pass-
word”. Since fuzzy aPAKE-1 and fuzzy aPAKE-2 are designed based
on oblivious transfer protocols and standard asymmetric PAKE,
respectively, different instantiations cause distinct performance. To
make the comparison more convincing, as recommended in [21],
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Figure 12: Running time of different operations in Dec for

biometric vector set, as the size of biometric vector set in-

creases from 20 to 1000.

we instantiate fuzzy aPAKE-1 with the oblivious transfer protocol
from [4] and instantiate fuzzy aPAKE-2 with OPAQUE [32].

The results are shown in Figure 13. The running time of fuzzy
aPAKE-1 is more than 4000 times cost of BAKE-1, and more than
2000 times cost of BAKE-2. The running time of fuzzy aPAKE-2 is
more than 5000 times cost of BAKE-1, and more than 2000 times
cost of BAKE-2. The communication cost of fuzzy aPAKE-1 is more
than 50 times cost of BAKE-1, and more than 230 times cost of
BAKE-2. The communication cost of fuzzy aPAKE-2 is more than
80 times cost of BAKE-1, and more than 380 times cost of BAKE-
2. Therefore, BAKE has an overwhelming advantage over fuzzy
aPAKE in terms of both computation and communication costs.

7 RELATEDWORK

According to whether the input secret is precise, we divide AKE
into two categories: precise AKE and fuzzy AKE.

Precise AKE. In this category, the input secret cannot con-
tain any typo or noise. The most common precise AKE includes
password-based solutions [5, 32, 49] and PKI-based solutions [13,
45]. For resource-constrained devices, HB-type authentication pro-
tocols [26, 30, 33] were proposed, whose security mainly relies on
the Learning Parity with Noise (LPN) problem. In practice, many
messaging applications (e.g., WhatsApp [51]) enable out-of-band
authentication, assuming that users have access to an external
channel, such as Short Authenticated Strings (SAS) [37, 42, 50]. Un-
fortunately, these solutions cannot apply to biometric AKE since the
captured biometrics (i.e., the input secret) contains unpredictable
noises. Moreover, many solutions (e.g., HB-type protocols and SAS-
based solutions) require the two participants to share a secret, which
violates data protection regulations when applied to biometrics.

Fuzzy AKE. In this category, the input secret may contain typos
or noises when fed into cryptographic algorithms. Existing solu-
tions can be classified into two types: symmetric and asymmetric.

In the symmetric solutions, the two communicating participants
possess the same secrets to authenticate each other and negotiate
a session key. Fuzzy extractor is a typical solution introduced by
Dodis et al. [18]. In their solution, two similar biometric inputs can
be used to extract the same randomness from public information
while hiding these biometric inputs. Afterward, various fuzzy ex-
tractor variants emerged [9–11], and multi-factor AKE protocols
were constructed based on the fuzzy extractor [38, 39]. However,

1

10

100

1000

10000

100000

1

10

100

1000

10000

100000

1000000

10000000

100000000

BAKE-1 BAKE-2 Fuzzy
aPAKE-1

Fuzzy
aPAKE-2

Running Time

Communication Cost

R
un

ni
ngg

 T
im

ee 
(m

s)

C
om

m
unication

C
ostt (K

B
)

Figure 13: Comparison of running time and communication

cost.

these solutions need to store the (secret) randomness on the other
participant, which may be exploited by an adversary. Another rep-
resentative symmetric solution is presented by Dupont et al. [19],
called fuzzy Password-Authenticated Key Exchange (fPAKE), which
solved the problem of key exchange from noisy low-entropy pass-
word strings. However, their solutions need the other participant to
store the password, which also violates data protection regulations
when applied to biometrics.

As required in General Data Protection Regulation (GDPR), bio-
metric characteristics should be protected against disclosure. For
this goal, the study on asymmetric solutions, in which a participant
has no access to the biometric characteristics of other participants,
attracts the attention of researchers. To the best of our knowledge,
the only suitable asymmetric solutions are the fuzzy asymmetric
PAKE protocols proposed by Erwig et al. [21]. They considered
asymmetric PAKE and fuzzy PAKE simultaneously, and gave two
constructions based on secret sharing and standard asymmetric
PAKE, respectively. However, this primitive is only proposed for
fuzzy vectors (e.g., password). Moreover, their constructions involve
frequent interactions and are not suitable for asynchronous messag-
ing scenarios. In contrast, BAKE is designed for both fuzzy vectors
and fuzzy sets, and our constructions involve only one-round inter-
action and support both synchronous and asynchronous scenarios.

8 CONCLUSION

To facilitate secure messaging in social life, we propose a BAKE
framework that supports both synchronous and asynchronous sce-
narios and does no need to store any secret, including biometric
characteristics, in a terminal. We present a cryptographic primitive
called AFEM to enable only the participant with similar biometric
characteristics to obtain a message that is encapsulated with the
corresponding public key. We also give two constructions for AFEM
and initiates them with the iris and fingerprint in our BAKE frame-
work. The security analysis demonstrates that BAKE is secure and
the experimental results show the practicality of BAKE.
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