
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022 1359

An Efficient Identity-Based Provable Data
Possession Protocol With

Compressed Cloud Storage
Yang Yang , Yanjiao Chen , Senior Member, IEEE, Fei Chen , Member, IEEE,

and Jing Chen , Member, IEEE

Abstract— Cloud storage is more and more prevalent in
practice, and thus how to check its integrity becomes increas-
ingly essential. A classical solution is identity-based (ID-based)
provable data possession (PDP), which supports certificateless
cloud storage auditing without entire user data. However, existing
ID-PDP protocols always require that cloud users outsource data
blocks, authenticators and a small-sized file tag to the cloud,
and make use of the heavy elliptic curve cryptography over
bilinear pairing. These disadvantages would result in vast storage,
communication, and computation costs, which is unexpected,
especially for resource-limited cloud users. To improve the per-
formance, this paper proposes a novel cryptographic primitive:
ID-based PDP with compressed cloud storage. In this model,
cloud storage auditing can be achieved by using only encrypted
data blocks in a self-verified way, and original data blocks can be
reconstructed from the outsourced data. Thus, data owners no
longer need to store original data blocks on the cloud. We also use
some basic algebraic operations to realize a concrete ID-based
PDP protocol with compressed cloud storage, which is quite
efficient due to no heavy cryptographic operations involved. The
proposed protocol can easily be extended to support the other
practical functions by using the primitive replacement technique.
The proposed protocol is strictly proven to have the properties
of correctness, privacy, unforgeability and detectability. Finally,
we give plenty of theoretical analysis and experimental results to
validate the efficiency of the proposed protocol.

Manuscript received August 29, 2021; revised December 25, 2021; accepted
March 5, 2022. Date of publication March 11, 2022; date of current version
April 5, 2022. The work of Yang Yang was supported by the Fundamental
Research Funds for the Central Universities under Grant 2042021kf1030.
The work of Yanjiao Chen was supported by the National Natural Science
Foundation of China under Grant 61972296. The work of Fei Chen was
supported in part by the National Natural Science Foundation of China
under Grant 61872243 and in part by the Guangdong Basic and Applied
Basic Research Foundation under Grant 2020A151501489. The work of
Jing Chen was supported in part by the National Natural Science Foundation
of China under Grant U1836202, Grant 61772383, Grant 62076187, Grant
61802214, and Grant 62172303; and in part by the National Key Research
and Development Program of China under Grant 2021YFB2700200. The
associate editor coordinating the review of this manuscript and approving
it for publication was Mr. Frederik Armknecht. (Corresponding author:
Yanjiao Chen.)

Yang Yang is with the School of Information and Security Engineering,
Zhongnan University of Economics and Law, Wuhan 430073, China (e-mail:
yaoyuandepiaoxue@126.com).

Yanjiao Chen is with the College of Electrical Engineering, Zhejiang
University, Hangzhou 310007, China (e-mail: chenyanjiao@zju.edu.cn).

Fei Chen is with the College of Computer Science and Soft-
ware Engineering, Shenzhen University, Shenzhen 518061, China (e-mail:
fchen@szu.edu.cn).

Jing Chen is with the Computer School, Wuhan University, Wuhan 430072,
China (e-mail: chenjing@whu.edu.cn).

Digital Object Identifier 10.1109/TIFS.2022.3159152

Index Terms— Basic algebraic operations, compressed cloud
storage, identity-based integrity auditing, provable data
possession.

I. INTRODUCTION

AS THE amount of data increases sharply, more and more
data owners prefer to store their data on the remote cloud

for storage burden release, universal data access, etc. Although
there are many benefits of cloud storage, it also results in
some serious security issues. The cloud cannot guarantee that
its storage is always intact due to unintentional mistakes and
intentional attacks. As identified in the CSA’s white paper [1],
the cloud is not responsible for actively notifying its users
of data abnormality. What is worse, the cloud might try to
cheat the user with falsified data for its economic interests.
Consequently, it is extremely important for the users to audit
the integrity of cloud storage from time to time.

To address the above problems, a simple way is to download
the entire data for integrity verification, which however is far
from practice since the amount of cloud storage is extremely
large. As a consequence, some well-known cryptographical
techniques for integrity verification, such as message digest
and secure hash function, cannot work well in this scenario.
Fortunately, a new cryptographical primitive, called provable
data possession (PDP), was proposed to verify cloud storage
integrity in a probabilistic way [2]. In such a primitive, the
verifier is able to handle integrity verification by using a
few aggregated values of cloud storage instead of the entire
data. According to the probabilistic analysis on PDP [2],
if 1% of 1,000 outsourced blocks are damaged, the verifier
is able to audit only 300 random blocks to disclose the data
abnormality with the probability greater than 95%. Thus,
PDP has attracted much attention in the secure cloud storage
field since it was proposed.

Up to now, many protocols based on PDP were proposed.
Among of them, identity-based (ID-based) PDP protocols
received the most attention due to the following two advan-
tages: 1) ID-based public auditing is supported, i.e., any
verifier having user identity is able to handle integrity veri-
fication; 2) no certificate is required for public-key authenti-
cation, which can avoid the complex certificate management.
However, in existing ID-based PDP protocols, integrity ver-
ification is usually implemented using the computationally
complex bilinear pairing, which results in a high computation

1556-6021 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3530-3525
https://orcid.org/0000-0002-1382-0679
https://orcid.org/0000-0001-8132-539X
https://orcid.org/0000-0002-7212-5297

1360 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

cost. Furthermore, the user outsources file blocks and their
authenticators to the cloud at the same time, which leads
to high storage and communication costs. To improve the
practicability of ID-based PDP protocol, it is meaningful
to realize it by using basic algebraic operations and make
outsourced data compressed.

Although some PDP protocols are consisting of only basic
algebraic operations, such as [3], [4], they cannot be directly
extended to ID-based PDP protocols with compressed cloud
storage. The reasons are as follows: 1) they only allow the data
owner to initiate private auditing and cannot support public
auditing; 2) they require that the user outsources both data
blocks and their authenticators for integrity verification. Under
this circumstance, we are motivated to design a compressive
ID-based PDP with no heavy cryptography. The key of our
solution is a new type of data authenticator, which can
verify its integrity by itself. Moreover, a random number of
these well-designed authenticators can be aggregated into a
single value for integrity verification. Thus, the user can only
outsource data authenticators to the cloud, which achieves
compressed cloud storage. Our solution contains only basic
algebraic operations, in which the most complicated operation
is modular exponentiation. Remarkably, the resource-limited
user only involves several additions and multiplications, which
consumes a little workload.

A. Contribution

This paper further studies how to achieve cloud storage
auditing by using ID-based PDP. Our contributions are listed
as follows:

• We make the first attempt to design an ID-based PDP
protocol based on basic algebraic operations. Compared
with existing ID-based PDP protocols with the complex-
ity O(n4), the proposed protocol only has the complexity
O(n3), which is highly efficient. The proposed protocol
builds its security on the well-known computationally
infeasible problems, the proposed protocol can protect
user privacy against collusive attack, which is not con-
sidered in most of the existing ID-based PDP protocols.

• We extend the proposed protocol to support compressed
cloud storage. In such a solution, the data owner only
stores encrypted data blocks (i.e., data authenticators)
and a small-sized file tag on the cloud. Then, storage
and communication costs can be hugely reduced since
original data blocks are no longer required to be uploaded.
As far as we know, our protocol is the first true ID-based
PDP with compressed cloud storage. We also present how
to make the proposed protocol support other practical
functions by using the primitive replacement technique.

• We formalize the system and security models of ID-based
PDP with compressed cloud storage. For the proposed
protocol, we present detailed proof of its correctness,
privacy, unforgeability and detectability. At last, we eval-
uate its performance from the theoretical analysis and
experimental results.

B. Related Work

The seminal work of probabilistic cloud storage auditing
is proposed in [2], based on PDP. Its main advantage is

that even though verifiers do not possess user data, they
can also efficiently disclose the abnormal data incidents in
a probabilistic way.

On the one hand, plenty of PDP protocols were proposed
to further improve its performance and enrich its functionality.
From the efficiency perspectives, the protocols were commit-
ted to realize PDP by using the basic algebraic operations
instead of the complex cryptographical primitives. For exam-
ple, the protocols in [3]–[6] were based on the pseudorandom
function, the distributed string equality checking, discrete log-
arithm problem and error correcting codes, respectively. From
the perspectives of functionality, the protocols in [9]–[14]
were proposed to support dynamic updates of cloud storage;
the protocols with key-exposure resistance were designed
in [15]–[17], which achieve dynamic updates of user key;
the blockchain-based protocols were constructed in [18]–[20],
which realize the properties of impartiality and traceability.
One thing to note is that the genuine of users’ public keys
in the PDP is guaranteed by using the certificates from the
public key infrastructure (PKI), which introduces the complex
certificate management.

On the other hand, plenty of ID-based PDP protocols
emerged, in which users’ public keys can be retrieved by their
identities and thus the correctness of users’ public keys can be
guaranteed without the help of the certificates from the PKI.
The main advantage of ID-based PDP is that it can effectively
eliminate complicated certificate management, which breaks
the bottleneck of key distribution. Initially, Wang et al. [21]
extended the previous PDP-based protocol [10] to support
ID-based cloud storage auditing. In this solution, cloud storage
is composed of data blocks and authenticators, where data
authenticator is generated by first multiplying the hash value
of data index and the value of data block mapped to an elliptic
curve, and then masking the product value with user’s secret
key. After the breakthrough [21], ID-based PDP gradually
becomes the hot spot in the cloud storage auditing field. Many
existing ID-based PDP protocols can be viewed as the variants
of [21], such as [22], [33]. These variants further extend the
functionality of ID-based PDP from different aspects. Specif-
ically, the protocols in [22]–[24] were able to support user
revocation in a cloud storage sharing group, which can prohibit
the revoked users from uploading data. The protocols in [25],
[26] allowed data owners to delegate their data outsourcing
tasks to the third-party proxies. The protocol in [27] achieved
the property of zero-knowledge privacy preserving by using
the asymmetric group key agreement. The protocol in [28]
supported not only dynamical update of cloud storage but
also fair arbitration of auditing results. The protocol in [29]
realized user key distribution in a fuzzy way, which further
lower the burden of key management. The protocol in [30]
enabled data owners to sanitize their sensitive information
into uniform messy codes before outsourcing to the cloud.
The protocols in [31], [32] designed the incentive mechanisms
for some participants during cloud storage auditing tasks,
where [31] rewarded the unconditionally anonymous data
uploaders and [32] introduced the blockchain technique to
reward the user who plays the role of the group manager. The
protocol in [33] utilized the blockchain to check the auditing
results of the TPA, which can resist the misbehavior that TPA

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT ID-BASED PROVABLE DATA POSSESSION PROTOCOL WITH COMPRESSED CLOUD STORAGE 1361

Fig. 1. The system model.

is not getting in touch with the data owner and colluding with
the cloud.

Untrivally, all of the above PDP protocols [2]–[32] are relied
on both data blocks and their authenticators to achieve cloud
storage auditing. A recent compressive PDP protocol in [34]
enabled that data owner no longer needed to outsource original
data blocks, while keeping cloud storage auditing in effect.
However, to support ID-based cloud storage auditing, the data
owner in [34] is required to publish a secret value to the
third-party auditors, whose correctness needs to guaranteed
by the PKI’s certificates. This is opposite to the original
intention of ID-based PDP. In addition, most of the existing
ID-based PDP protocols are built on the complex elliptic curve
cryptography (ECC) over bilinear pairing, which results in
heavy workloads. To meet the above challenges, this paper
first explores a true ID-based PDP protocol with compressed
cloud storage, which contains only basic algebra operations.

C. Organization

In the rest, we introduce some preliminaries of this paper
in Section II. An efficient ID-based PDP protocol with com-
pressed cloud storage is presented in Section III. The theoret-
ical analysis is provided in Section IV. Section V evaluates
the performance. At last, Section VI presents the conclusion.

II. PRELIMINARIES

This section first illustrates the system model of ID-based
PDP with compressed cloud storage, and then introduce its
security model and background knowledge.

A. System Model

An ID-based PDP protocol with compressed storage con-
tains four entities: key generation center (KGC), data owner,

cloud, and third-party auditor (TPA), which are illustrated as
follows:

• KGC: is to initialize system parameters and then generate
user keys.

• Data owner: is to store a large amount of data on the
cloud, and concern about whether the outsourced data is
intact or not.

• Cloud: is to provide abundant resources for storing its
users’ data.

• TPA: is to handle integrity verification against cloud
storage on behalf of data owners.

As depicted in Fig. 1, the interactions among these four entities
are given below. During data outsourcing, the data owner
transmits the identity to the KGC for requesting a secret key,
and outsources the encrypted file to the cloud for storage.
During integrity auditing, the TPA first transmits the challenge
sequences to the cloud for requesting the integrity proof and
then checks whether the challenged data is intact or not
according to the received proof, finally reports the verification
results. During data recovery, the data owner downloads the
encrypted file from the cloud for decryption.

Next, we summarize the framework of ID-based PDP with
compressed cloud storage in Definition 1.

Definition 1: An ID-based PDP protocol with compressed
cloud storage contains seven algorithms:

• Setup: Given a security parameter, the KGC produces
the master secret key and the public key.

• Extract: Given user identity, the KGC distributes the
user’s secret key to this user. If it is valid, the user accepts
it; otherwise, drops it.

• Outsource: Given the data file, the data owner outputs
the encrypted values of file blocks and the small-sized file
tag to the cloud.

• Challenge: Given the file tag, the TPA outputs challenge
sequences to the cloud.

• ProofGen: Given the encrypted file blocks and the chal-
lenge sequence, the cloud computes an integrity proof to
the TPA.

• Verify: Given the file tag, the challenge sequence, and
the integrity proof, the TPA outputs the verifying result to
the owner of the challenged file.

• Recover: Given the encrypted file, the data owner out-
puts the original data.

It is intuitive that the above scheme is faced with the
following security threats: 1) the third-party entities, including
the KGC, the TPA, and the cloud, might be interested in
the privacy of data owner, which is driven by economic
incentives or personal curiosity; 2) when the audited data is
damaged, the cloud might provide the falsified proofs in order
to pass the TPA’s verification, which is driven by protecting
its reputations and interests; 3) when only a small part of user
file is corrupted, the TPA’s auditing blocks might not contain
these broken ones, which is due to the limited length of the
auditing sequence.

Based on the above discussion, an ID-based PDP with
compressed cloud storage is expected to achieve the following
goals:

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

1362 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

• Correctness: if the protocol is executed without misbe-
havior, its correctness verification and data recovery can
always be satisfied.

• Privacy: the data owner can prevent the contents of his/her
files from the other entities in the protocol.

• Unforgeability: the cloud cannot falsify an integrity proof
that is verified successfully.

• Detectability: the TPA can detect the abnormality of cloud
storage with a non-negligible probability.

• Efficiency: the costs of storage, communication, and
computation are expected to be as small as possible.

B. Security Model

According to the above design goals, we formalize the secu-
rity model of ID-based PDP with compressed cloud storage
by using the following security definitions.

Definition 2 (Privacy): An ID-based PDP protocol with
compressed cloud storage fulfills the property of privacy if
an adversary A can hardly win the following security game.

• Setup. A challenger C performs the algorithm Setup
and obtains the master secret key and the public key.
C transmits the public key to the adversary A.

• Query. A is allowed to query the following parameters
from the challenger C.

1) Extract Queries: A queries the private key for the
identity I D. C performs the algorithm Extract to
generate the private key, which is then sent to A.

2) Outsource Queries: A queries the encrypted blocks
for a data file F . C performs the algorithm Out-
source to compute the encrypted blocks and sends
them to A.

• Challenge. C first generates some random data blocks
and then computes their encrypted values through the
algorithm Outsource. C transmits these encrypted blocks
to A for retrieving their original values.

• Decode. A responses the decoded data blocks to the
challenge of C. If its decoded data blocks are verified
successfully by C, A is regarded as the winner.

In this security game, A aims to crack the data blocks from
their encrypted values that never have been queried from C.
We are required to prove that even though A makes enough
queries, it can still hardly retrieve the unqueried data blocks
from their encrypted values.

Definition 3 (Unforgeablility): An ID-based PDP protocol
with compressed cloud storage achieves the property of
unforgeability if the probability that the adversary A wins
the security game against the challenger C is negligible in
the security parameter, where the security game is given
below:

• Setup. C performs the algorithm Setup and produces the
master secret key and the public key.

• Query. A is allowed to launch different types of queries
against the challenger C, which are the same as the
queries identified in Definition 2 and thus are omitted
here.

• ProofGen phase. For a file F that the Outsource
query has been made, A runs the algorithms Challenge

and ProofGen to compute a challenge chal and the
corresponding proof � based on the its encrypted
blocks from the Outsource queries, and transmits
(chal, �) to C. C handles the verification of �
by using the algorithm Verify, and returns the
result to A.

• Output phase. At last, A randomly selects a file F on
the condition that F must not have been queried in
the Outsource queries. A produces and feeds back an
integrity proof �. If A can produce � that passes the
verification of C with a non-negligible probability �, A
is considered as �-admissible.

In this security game, the goal of A is to forge a valid proof
of the data blocks that never have been queried to, which can
pass the integrity verification of C. We intend to prove that
even though A makes enough queries, the forged proof of the
unqueried data blocks can pass the verification of C with a
negligible probability.

Definition 4 (Detectability): An ID-based PDP protocol
with compressed cloud storage reaches the property of
detectability if only a tiny fraction of the user file on the cloud
is damaged, the TPA can still disclose this abnormality with
a non-negligible probability.

C. Identity-Based Signature

An identity-based signature usually contains four algorithms
described below [35].

• Setup(λ) → M SK . Given the security parameter λ, KGC
is to output the master secret key M SK and the system public
key P K .

• Extract(I D, M SK) → SKI D . Given a user identity I D
and the master secret key M SK , KGC is to output the secret
key SKI D for this user.

• Sign(m, I D, SKI D) → τ . Given a user’s message m,
identity I D and secret key SKI D , the user is to output a
signature τ of this message m.

• Verify(m, τ, I D, P K) → ν. Given a user’s message m,
a signature τ , identity I D and the public key P K , verifier is
to output ν = 0 if this signature is valid, and otherwise ν = 1.

D. Mathematical Background

Suppose that a multiplicative cyclic group G has the prime
order p and the generator g.

Computational Diffie-Hellman (CDH) Problem: is to solve
gxy with the input of g, gx, gy ∈ G, where x, y ∈ Z∗

p are
unknown.

Divisible Computation Diffie-Hellman (DCDH) Problem: is
to solve gy/x with the input of g, gx , gy ∈ G, where x, y ∈ Z∗

p
are unknown.

Discrete Logarithm (DL) Problem: is to solve x ∈ Z∗
p with

the input of g, gx ∈ G.
Notably, the probabilities of solving the CDH, the DCDH,

and the DL in a probabilistic polynomial time (PPT) are negli-
gible. At last, the main notations in this paper are summarized
in Table I.

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT ID-BASED PROVABLE DATA POSSESSION PROTOCOL WITH COMPRESSED CLOUD STORAGE 1363

TABLE I

NOTATIONS

III. THE PROPOSED PROTOCOL

A. Overview

To compress the size of cloud storage, we pro-
pose to handle integrity verification by simply using the
encrypted data blocks without the help of their origi-
nal values. For this purpose, we first introduce a lemma
below.

Lemma 1: Given a, b ∈ Z p and y = ax + b, but x is
unknown. If b < a, one can have

y = f loor(y/a) · a + b. (1)

Proof:

f loor(y/a) · a + b = f loor((ax + b)/a) · a + b

= f loor(x + b/a) · a + b (2)

Due to b < a, we can observe b/a < 1 and then f loor(x +
b/a) = x . Substituting f loor(x + b/a) = x into (2), we can
directly obtain

f loor(y/a) · a + b = x · a + b = y

The proof is completed. �
Assume that x is a data block, y is its encrypted value,

and (a, b) is the secret key kept by the cloud user. After
outsourcing y to the cloud, the user can easily validate its
integrity by checking whether (1) holds or not. This implies
that we can utilize Lemma 1 to design a private PDP protocol
with compressed cloud storage when only a single data block
is audited. However, PDP is a probabilistic integrity checking
framework for cloud storage. To convince the cloud user, the
number of challenged blocks is required to be much greater
than 1. To meet this challenge, we give the following theorem
derived from Lemma 1.

Theorem 1: Given a ∈ Z p and a hash function H :
{0, 1}∗ → Z p, one computes � = ∑n

j=1 e j yi j , where yi j =
axi j + H (i j). If

∑n
j=1 e j H (i j) < a, one can have

� = f loor(�/a) · a +
n∑

j=1

e j H (i j). (3)

Proof:

f loor(�/a) · a +
n∑

j=1

e j H (i j)

= f loor
(n∑

j=1

e j xi j +
∑n

j=1 e j H (i j)

a

)
· a +

n∑
j=1

e j H (i j)

(4)

If
∑n

j=1 e j H (i j) < a, then (4) can be transformed into

f loor(�/a) · a +
n∑

j=1

e j H (i j) =
n∑

j=1

e j axi j +
n∑

j=1

e j H (i j)

=
n∑

j=1

e j (axi j + H (i j))

= �

The proof is completed. �
Assume that the user computes the encrypted value of

the data block xi as yi = axi + H (i), where a and H are the
secret key. The user stores the encrypted data blocks on the
cloud. In each integrity auditing, the data owner first transmits
a challenge sequence chal = {i1, i2, . . . , in; e1, e2, . . . , en} to
the cloud, and then receives a proof � = ∑n

j=1 e j yi j , finally
validates the integrity of cloud storage according to (3). In such
way, we can achieve a private PDP protocol with compressed
cloud storage based on Theorem 1.

However, the data owner and the cloud might dispute
the integrity verification results for their own interests. For
example, the data owner frames that the valid proof cannot
pass the verification for compensation, and the cloud with data
corruption claims that its proof can be verified successfully
to avoid penalty. To solve this problem, a simple way is to
introduce a TPA for auditing cloud storage on behalf of data
owners. In such a way, the TPA is required to learn the values
of a and H for integrity verification. This brings a serious
security challenge: the TPA can freely access, insert, delete
and modify user data on the cloud. This implies that the user
cannot directly transmits his/her secret key to the TPA for
public integrity auditing. To meet this challenge, we introduce
a novel theorem as follows.

Theorem 2: Given a large prime p, a random q much
smaller than p, a ∈ Z p, b, c, r ∈ Zq, H : {0, 1}∗ → Z p, one
computes � = ∑n

j=1 e j yi j , where yi j = a(xi j +bH (i j))+cxi j .
If â = a/r and

∑n
j=1 e j cxi j < â, then

gcf loor(�/â)·â =ga(�− f loor(�/â)·â) · gabc
∑n

j=1 e j H(i j) mod p,

(5)

where g ∈ Z p is the generator of a multiplicative cyclic
group G with the prime order p.

Proof:

f loor(�/â) · â = f loor

(n∑
j=1

e jr(xi j + bH (i j))

+
(n∑

j=1

e j cxi j

)
/â

)
· â.

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

1364 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 2. The flow chart of the overall structure of the proposed IDbased PDP protocol.

Since
∑n

j=1 e j cxi j < â, and then

f loor(�/â) · â =
n∑

j=1

e j a(xi j + bH (i j)). (6)

From (6), we can have

� − f loor(�/â) · â =
n∑

j=1

e j cxi j .

and then

gcf loor(�/â)·â = ga
∑l

j=1 e j cxi j · gabc
∑n

j=1 e j H(i j) mod p

= ga(�− f loor(�/â)·â) · gabc
∑n

j=1 e j H(i j) mod p

The proof is completed. �
Assume that the encrypted value of the data block xi is

computed as yi = a(xi + bH (i)) + cxi , where (a, b, c, r)
is the secret key and (â, H, g, ga, ga, gabc) is the public
key. The TPA generates the challenge sequence chal =
{i1, i2, . . . , in; e1, e2, . . . , en}. While obtaining the challenge
sequence, the cloud computes the integrity proof as � =∑n

j=1 e j yi j . According to the received proof �, the TPA
verifies the integrity of cloud storage through examining
whether (5) holds or not. Thus, we can realize a public PDP
protocol with compressed cloud storage based on Theorem 2.
To avoid complex certificate management, we further intro-
duce an ID-based signature algorithm to transform the above
public PDP protocol to the ID-based PDP protocol. Please
refer to the next subsection for the details.

B. Protocol Construction

This subsection summarizes the detailed description of the
proposed ID-based PDP protocol with compressed cloud stor-
age, which is shown in Fig. 2. To make our description concise,
we will omit some ‘mod p’ in our modular exponentiation.

1) Setup(λ) → (M SK , P K): The KGC initializes the
master secret key M SK and the public key P K of the whole
system.

• According to the security parameter λ, the KGC deter-
mines a large prime p, a random q much smaller than p,

two random elements g, σ ∈ Z p and a hash function
H : {0, 1}∗ → Z p .

• The KGC sets M SK = σ and P K = {p, q, g, gσ , H }.
2) Extract(I D) → SKI D: The KGC produces the secret

key SKI D of a user with the identity I D, and the user checks
its validity.

• According to the received I D, the KGC first randomly
picks ς ∈ Z p and then calculates a� = ς + σ H (I D)
mod (p − 1).

• The KGC sets SKI D = a�, which is fed back to the
corresponding user together with gς .

• The user checks the correctness of SKI D by judging
whether

ga� = gς · gσ H(I D) mod p. (7)

If yes, the data owner accepts it; otherwise, asks for it
again.

3) Outsource(F; SKI D, P K) → (T, τ): The user gener-
ates the encrypted values of all blocks in the data file F and
the file tag.

• The user determines four random elements a�� ∈ Z p and
b, c, r, l ∈ Zq . To resist the escrow attack [23], the data
owner updates the secret key as a = a� + a��. The data
owner then computes â = a/r . Note that ql � â is
required be satisfied.

• The data owner partitions the data file F into
{x1, x2, . . . , xm} and encrypts the data block xi into yi =
a(xi + bH (name||i))+ cxi , where xi ∈ Zl , name is the
identifier of F and 1 ≤ i ≤ m.

• The user generates the set of the encrypted blocks as T =
{y1, y2, . . . , ym} and the file tag as τ = name�l�m�â�
ga�gc�gabc�spk�SSig(name�l�m�â�ga�gb�gabc, ssk),
where SSig is an identity-based secure digital signature
function due to no PKI involved [36]–[38], spk and
ssk are its public and secret keys. Finally, the data
owner outsources (T, τ) to the cloud and privately keeps
(a, b, c, r) at local. Note that file tag τ is only composed
of a few values for data auditing, whose size is much
smaller than data blocks and their authenticators.

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT ID-BASED PROVABLE DATA POSSESSION PROTOCOL WITH COMPRESSED CLOUD STORAGE 1365

4) Challenge(·)→ chal: The TPA produces a challenge
sequence chal.

• The TPA first retrieves the file tag τ from the cloud and
then verifies its validity using its signature. If invalid,
the TPA terminates the audit and reports this failure;
otherwise, the TPA proceeds to parse the elements l, m,
â, ga and gac from τ .

• The TPA determines the indices of the challenged
blocks {i1, i2, . . . , in} from [1, m] and the random chal-
lenge elements {e1, e2, . . . , en}. According to Theorem 2,
the selection of {e1, e2, . . . , en} is required to make∑n

j=1 e j ql < â hold.
• The TPA generates the challenge sequence as chal =

{i1, i2, . . . , in; ei1 , ei2 , . . . , ein }, which is then sent to the
cloud.

5) ProofGen(T) → �: In this algorithm, the cloud gener-
ates an integrity proof � = ∑n

j=1 ei j yi j as the response to the
TPA’s challenge.

6) Verify(chal, �; τ) → ν: In this algorithm, the TPA
handles integrity verification by checking whether

gcf loor(�/â)·â = ga(�− f loor(�/â)·â) · gabc
∑n

j=1 e j H(i j) mod p.

If yes, the TPA outputs ν = 0, which implies that cloud storage
is still intact; otherwise, ν = 1, meaning that cloud storage is
corrupted.

7) Recover(yi) → xi : The user reconstructs
the original data block xi from its encrypted value
yi by computing xi = (yi − f loor(yi/â) · â)/c,
where 1 ≤ i ≤ m.

C. Functional Extension

This subsection discusses the functional extension of the
proposed protocol.

Up to now, many ID-based PDP protocols with func-
tional extension were proposed in [22]–[32], which are
designed based on the cryptographical primitive of the seminal
work [21], i.e., ID-based PDP over bilinear pairing. This paper
explores a new primitive: ID-based PDP with compressed
cloud storage. By replacing the primitive in the existing
ID-based protocols, we can easily extend the proposed proto-
col to support massive functions. Next, we take three examples
to illustrate how our solution works.

1) To support user revocation, the protocol in [24] introduces
a group manager for managing the group key, which is taken
as the partial key of each group user. Once revoking a user, the
group manager distributes a new group key to all non-revoked
users for updating their secret keys. In such a way, the revoked
users cannot upload the data to cloud anymore since they
are unable to compute the valid data authenticators by using
the outdated secrete keys. In the same way as [24], we can
make the proposed protocol support user revocation. For this
purpose, we need to slightly modify the algorithms Extract
and Outsource, and then add a new algorithm Revoke. The
details are as follows.

� Extract(I D) → SKI D : The KGC produces the secret
key SKI D of a group user with identity I D, and then the
group manager updates SKI D with a group key.

• According to the received I D, the KGC first randomly
picks ς1, ς2 ∈ Z p , and calculates a1 = ς1 + σ H (I D)
mod (p − 1). The the KGC transmits ς2 to the group
manager for computing the partial key.

• The KGC sets SKI D equal to a1, which is transmitted to
the group user.

• The group user checks the correctness of SKI D by
judging whether ga1 = gς1 · gσ H(I D) mod p holds or
not. If no, the group user requests it again; otherwise,
goes to the next step.

• The group manager sets the number of user revocations
as RN = 0, which is then transmitted to the cloud and
the group users.

• The group manager selects a random element δ ∈ Z p , and
then computes a2 = ς2 +δH (I D, a1, RN) mod (p−1).

• The group manager sets the group key as SKG = a2,
which is then sent to the group users together with gδ.

• The group user checks the correctness of SKG by judging
whether ga2 = gς2 · gδH(I D,a1,RN) mod p. If yes, the
group user accepts it and updates SKI D as a� = a1 + a2;
otherwise, asks for it again.

� Outsource(F; SKI D, P K) → (T, τ): In this algorithm,
there are only two modifications:

• The group user embeds the number of user revocations
RN into the file identifier, which is changed from name
into name||RN .

• The cloud verifies whether RN in the uploaded data is
the newest. If yes, the cloud stores the received data;
otherwise, just drops it.

� Revoke(F; SKI D, P K) → (T, τ): In this algorithm, the
group manager regenerates a group secret key for all non-
revoked users.

• The group manager updates the number of user revoca-
tions as RN = RN + 1.

• The group manager and user re-execute the last three
steps in the algorithm Extract.

2) To support data dynamics, the protocol in [34] introduces
an index array, denoted as ind_arr , to manage the relationship
between block indices and encryption indices, where block
index indicates the true location of the block and encryption
index refers to the index used to generate the encrypted block
value. Note that the index of ind_arr is exactly the block
index and its value represents the encryption index. That is to
say, the encryption index i � of the i -th block can be represented
as i � = ind_arr [i]. Initially, block indices and encryption
indices are the same, which however become inconsistent
after data dynamics, including block insertion, deletion and
modification. Thus, we need to slightly modify the algorithm
Verify as follows.

� Verify(chal, �; τ) → ν: In this algorithm, the TPA
carries out integrity verification by judging whether

gcf loor(�/â)·â = ga(�− f loor(�/â)·â) · gabc
∑n

j=1 e j H(i �j) mod p.

where i �
j = ind_arr [i j]. If yes, the TPA outputs ν = 0;

otherwise, ν = 1.
3) To support batch auditing, we can easily achieve

this due to our aggregated computation on integrity

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

1366 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

proof. Suppose that user data are distributedly stored
on K clouds, and the k-th cloud stores the encrypted
data file Tk = {yk,1, yk,2, . . . , yk,m} and the file tag
τk = namek�lk�m�âk�gak �gck �gakbkck �spk�SSig(namek�lk�
m�âk�gak�gck �gakbkck �spk, ssk), where 1 ≤ k ≤ K . In order
to audit these K user files simultaneously (i.e., batch auditing),
we slightly modify the algorithms Audit, Prove and Verify as
follows.

� Audit(·)→ chal: In this algorithm, there is only one
modification: the TPA respectively transmits the challenge
sequence chalk = {ik,1, ik,2, . . . , ik,n; ek,1, ek,2, . . . , ek,n} to
k-th clouds, where 1 ≤ k ≤ K .

� ProofGen(Tk) → �k : In this algorithm, the k-th cloud
generates an integrity proof �k = ∑n

j=1 ek, j yk,ik, j as the
response to the TPA’s challenge.

� Verify(chalk, �k ; τk) → ν: In this algorithm, the TPA
executes integrity verification by judging whether

g
∑K

k=1 ck f loor(�k/âk)·âk

= g
∑K

k=1 ak(�k− f loor(�k/âk)·âk)

· g
∑K

k=1 akbkck
∑n

j=1 ek, j H(namek�ik, j) mod p. (8)

If yes, the TPA outputs ν = 0; otherwise, ν = 1. Note that (8)
is actually a linear combination of (5) and thus can be easily
derived from (5).

D. Further Discussion

Among of these existing works, the closest one to our
work is the solution of proof of retrievability (PoR) in [8].
Although both of these two schemes only involve basic
algebraic operations, making them look similar, they have two
essential differences: 1) our solution supports identity-based
public cloud storage auditing (i.e., anyone with the identity
of a user can act as an auditor for this user), but PoR
only supports private cloud storage auditing (i.e., only the
data owner can behave as an auditor). This is because that
user privacy in PoR cannot be guaranteed in case of public
auditing; 2) the encrypted data blocks (i.e., data authenticators)
can achieve the property of self-verification in our solution,
which is not held in PoR. This is due to the fact that the
original data blocks in PoR cannot be reconstructed from their
authenticators without the help of their indices. In such way,
our solution no longer requires original data blocks stored
on the cloud, which also implies that the cloud only needs
to provide the aggregated value of encrypted data blocks for
integrity verification. However, in PoR, data owner is required
to store both original data blocks and their authenticators
on the cloud, and the cloud needs to provide both of their
aggregated values for integrity verification.

IV. THEORETICAL ANALYSIS

This section analyzes the correctness and security of the
proposed protocol.

A. Correctness

Theorem 3: If the KGC, the user, the cloud, and the TPA
perform honestly, the following conditions are satisfied: 1) the

user always accepts the secret key from the KGC; 2) the TPA
always passes the integrity verification in the case that cloud
storage is intact; 3) the user always successfully reconstructs
the original data from cloud storage.

Proof: 1) The correctness of user secret key is guaranteed
by (7). According to Fermat’s little theorem [39], it holds that
g p−1 = 1 mod p. We can then observe that

ga� = g(ς+σ H(I D)) mod (p−1) mod p

= gς · gσ H(I D) mod p

2) The correctness of integrity verification is determined
by (5). According to Theorem 2, (5) is always true if cloud
storage is intact.

3) The correctness of users’ data reconstruction is derived
as follows. Since xi ∈ Zl , c ∈ Zq and ql < â, we can have
f loor(cxi/â) = 0. Then,

(yi − f loor(yi/â) · â)/c

= (yi − f loor
(

r(xi + bH (name||i))+ cxi

â

)
· â)/c

= (a(xi + bH (name||i))+ cxi − a(xi + bH (name||i))/c

= xi (9)

From (9), we can conclude that a user can truly reconstruct
the data from the cloud if the downloaded data is verified to
be intact. �

B. Privacy

Theorem 4: Except for the data owner, even though all
other entities (including the KGC, the cloud, and the TPA)
are collusive, they still cannot obtain the original user blocks.

Proof: We prove the privacy of our protocol based on the
security game identified in Definition 2. Suppose A behaves
as the KGC, the cloud, and the TPA, who aims to crack the
information of the data owner. According to Definition 2, A
is able to query the values of user’s partial key and encrypted
blocks. Since user blocks are involved in encrypted blocks
and integrity proofs, our proof are mainly from these two
perspectives.

1) From a set T of encrypted blocks, A can have yi =
a(xi + bH (name||i)) + cxi , where 1 ≤ i ≤ m. Then, A can
have the following observations:{

f loor(yi/â) · â = a(xi + bH (name||i))
yi − f loor(yi/â) · â = cxi

(10)

It can be observed that A can utilize (10) to solve the value
of xi if a, b, or c is given. However, a, b and c are all hard to
solve due to the following reasons: on one hand, a can hardly
be decoded from â = a/r and a = a� + a�� without the values
of r and a��, where â and a� can be learned from τ and SKI D ,
respectively; on the other hand, a, b, c can hardly be decoded
from (g, ga, gc, gabc) due to the hard DL problem. Thereafter,
A cannot reconstruct the original user data from the encrypted
blocks.

2) From a set T of encrypted blocks, A can produce
integrity proofs with the input of challenge sequences. We start
from a simple case that only a single encrypted block yi is

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT ID-BASED PROVABLE DATA POSSESSION PROTOCOL WITH COMPRESSED CLOUD STORAGE 1367

challenged. Without loss of generality, the challenge element
is supposed to be ei = 1. In such way, the integrity proof is
computed as � = yi . According to (5), the integrity verifying
equation becomes

gcf loor(yi/â)·â = ga(yi− f loor(yi/â)·â) · gabcH(name||i) mod p.

(11)

Substituting (10) into (11),

ga(xi+bH(name||i)) = gacxi · gabcH(name||i) mod p. (12)

Combining (11) and (12), A can have{
gaxi = ga(yi− f loor(yi/â)·â) · (gabc/gab)H(name||i) mod p

gaxi = g f loor(yi/â)·â/gabH(name||i) mod p

However, A can hardly solve gxi from (g, ga, gaxi) due to the
hardness of the DCDH problem and thus xi is also unsolvable.
This also implies that A can hardly solve the original user
blocks from the integrity proof when a single encrypted
block is challenged. For the general case of auditing multiple
encrypted blocks, we can have the same observation, which
is because that its integrity verifying equation can be viewed
as the combination of (11). After that, A cannot recover the
original user data from the integrity proofs. �

C. Unforgeability

Theorem 5: If the challenged user data is damaged, it is
almost impossible for the cloud to pass the integrity verifica-
tion of the TPA.

Proof: We prove the unforgeability of our protocol based
on a list of security games.

1) We first introduce a new security game SG1, identical to
the security game identified in Definition 3.

2) We then introduce another security game SG2. This game
is similar to SG1, and their difference is that A makes enough
different types of queries. C observes the instances of integrity
verification and feeds back the verification results to A. If A
can pass the verification of C by outputting a new integrity
proof based on the blocks that have not been queried in the
Outsource queries, C aborts and reports failure.

Analysis: We show that if A has an advantage � to forge a
valid integrity proof in SG2, then C can solve a CDH problem
with the advantage at least �

2λ+l , where l is the number of
challenge elements for generating the proof. The interactions
between C and A are simulated as follows.

Setup: C setups the public key through the algorithm Setup
in the proposed protocol, which is then transmitted A.

Extract Queries: A adaptively requests the secret key
SKI D for any user identity I D. A list of Extract queries
and responses, denoted as E list , is maintained by C. If the
identity has been queried, C returns the recorded SKI D in the
list; otherwise, C firstly sets SKI D equal to a random a� ∈ Z p

and then returns it to A, finally appends (I D, SKI D) to E list .
Hash Queries: A adaptively picks any (name, i) to query

the hash oracle H . A list of H queries and responses, denoted
as Hlist , is maintained by C. Once receiving a new query, if the
i -th query has already been recorded in Hlist , C just simply
feeds back the recorded value; otherwise, C randomly chooses

wi ∈ Z p , and then sets H (name||i) = wi as the response to
the i -th query and appends (name, i, wi) to Hlist .

Outsource Queries: A adaptively picks (I D, name, i, xi)
to request the encrypted block yi . It is assumed that and I D
and (name, i) have been queried in the queries of Extract
and Hash; if not, A does queries at first. C also introduces a
list U list , which is composed of (I D, name, â, ga, gc, gabc).
If there is no tuple on U list including (I D, name), C randomly
selects a�� ∈ Z p , b, c, r ∈ Zq , and calculates a = a� + a��,
â = a/r , ga , gc, gabc in order to ensure that such a tuple exists
in U list . According to the received query on (I D, name, i, xi),
C computes yi = a(xi + bwi) + cxi , which is then fed back
to A.

ProofGen: A adaptively requests the verification result of
the proof � by selecting any file F under the identity I D.
Once receiving the proof �, C executes the algorithm Verify.
If � is valid, C outputs ν = 0 and otherwise ν = 1.

Output: A outputs a forged proof � on (I D, name,
chal, F), which never has been queried for F in the Out-
source queries. If � is valid, C reports failure and terminates
the game. In such way, we can build a simulator which takes A
as a subroutine in order to solve a given instance of the CDH
problem during a probabilistic polynomial time. Assuming
that the public (I D, name, â, ga, gc, gabc) is given to the
simulator. Note that if there is no tuple on U list including
(I D, name), then the simulator issues a query itself to ensure
that such a tuple exists. The goal of the simulator is to compute
hc from a triple (g, gc, h). Let
 = ∑l

j=1 e j xi j , where
e j ∈ chal and xi j ∈ F . On one hand, � is assumed to be
verified successfully, and thus

gcf loor(�/â)·â = gac
 · gabc
∑l

j=1 e j wi j mod p. (13)

On the other hand, by using the oracle-replay technique, A
can replay the Hash queries and forge another valid proof
�∗. In what follows,

gcf loor(�∗/â)·â = gac
 · g
abc

∑l
j=1 e j w

∗
i j mod p. (14)

Dividing (14) by (13), the simulator can have

gc�F = gabc�W mod p,

where �F = (f loor(�∗/â) − f loor(�/â)) · â and �W =∑l
j=1 e j (w

∗
i j

− wi j). Note that �F 	= 0 under the condition

of �W 	= 0. By assuming h = gab, the simulator can obtain

hc = gc�F/�W ,

which is the solution of a CDH instance, unless �W is equal
to 0. As wi j ∈ Z p , the probability of �W = 0 is greater than
1/2λ+l . Thus, we can have

AdvA[Game2] >
AdvA[Game1]

2λ+l
, (15)

where AdvA represents the advantage of the adversary.
3) Finally, we introduce a security game SG3, which is

similar to SG2. The only difference is that C records all its
query responses to A in SG3. If the proof �∗ provided by A
is accepted by C, but it is not equal to the integrity proof �
generated by using the locally recorded data, C reports failure
and terminates the game.

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

1368 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

TABLE II

PERFORMANCE COMPARISON OF DIFFERENT PROTOCOLS

Analysis: If A can forge a valid proof in SG3 with an
advantage �, we can build a simulator to solve a given instance
of the DL problem with the advantage at least �

2λ . Specifically,
our simulator takes A as a subroutine and intends to compute
a value α satisfying h� = hα . Let
 = ∑l

j=1 e j xi j , where
e j ∈ chal and xi j ∈ F . On one hand, the simulator can
generate an integrity proof � using the data recorded by itself,
which satisfies that

gcf loor(�/â)·â = gac
 · gabc
∑l

j=1 e j wi j mod p. (16)

On the other hand, we assume that A can forge an integrity
proof �∗ verified successfully, i.e.,

gcf loor(�∗/â)·â = gac
 · gabc
∑l

j=1 e j wi j mod p. (17)

Dividing (17) by (16), we can directly have

gcf loor(�/â)·â = gcf loor(�∗/â)·â mod p,

and can further imply that

1 = g�F mod p, (18)

where �F = (f loor(�∗/â) − f loor(�/â)) · â. According to
the assumption � 	= �∗ of this game, one can have �F 	= 0.
By assuming g = h�αhβ , and then (18) can be transformed
into

h� = h− β�F
α�F = h− β

α mod p

which is the solution of a DL instance, unless α is equal to 0.
Due to α ∈ Z p , the probability of α = 0 is greater than 1/2λ.
Thus, we can have

AdvA[Game3] >
AdvA[Game2]

2λ
,

Based on the above discussion, we can observe that the
cloud can hardly pass the integrity verification of the TPA by
using the forged data. �

D. Detectability

Theorem 6: If c of m blocks are corrupted and n blocks
are challenged, the probability Pc of disclosing this abnormal
incident is 1 − ∏n−1

k=0
(m−c−k)!

m−k , where ()! is the factorial
function.

Proof: Denote nc as the number of the corrupted blocks
that are audited. Then, we can have

Pc = 1 − P{nc = 0}
= 1 − m − c

m
· m − c − 1

m − 1
· · · · · m − c − (n − 1)

m − (n − 1)

= 1 −
n−1∏
k=0

(m − c − k)!
m − k

.

It can be observed that Pc keeps approaching to 1 as n and c
increase. When n or c is equal to its largest value m (i.e., all
m data blocks are audited or corrupted), one can easily have
Pc = 1. �

V. PERFORMANCE EVALUATION

This section analyzes the performance of the proposed
protocol from the perspectives of the storage, communication,
and computation costs. Also, we give a comparison between
the proposed protocol and the ID-based PDP protocol in [21]
(the extended version of the PDP protocol in [10]). The reason
why we choose [21] as the comparison is that almost all
ID-based PDP protocols are its variants, such as [22]–[32].
What is more, we build a prototype system of the proposed
protocol, and provide massive experimental results to validate
the practicability of our protocol.

A. Theoretical Results

For convenience, we concentrate on the highest degree of
the cost, which plays a decisive part in the whole cost. Let
|p| and |q| represent the lengths of an element in Z p and Zq ,
respectively.

1) Storage Cost: It depends mostly on cloud storage. In our
protocol, cloud storage is mainly determined by the encrypted
data blocks, whose storage cost is about m|p|. However,
cloud storage is mainly caused by user blocks, and their
authenticators in the state-of-the-art [21], which incurs about
m(|p| + |q|) storage cost.

2) Communication Cost: It relies largely on the interaction
between the user, the cloud, and the TPA. Thus, the proposed
protocol’s communication cost is about m|p| + n|q| for each
data outsourcing and auditing. In the previous [21], the data
owner is required to outsource both data blocks and their
authenticators to the cloud, which needs about 2m|p| + n|q|
communication cost for each data outsourcing and auditing.

3) Computation Cost: It is mainly determined by the oper-
ations of block encryption, proof generation, and integrity
verification, and thus we omit the computation cost of the
KGC here, which is negligible. For the data owner, he/she
generates the encrypted value of each data block in Out-
source, which requires about m|p||q| computation cost. For
the cloud, it generates an integrity proof in ProofGen, which
leads to about n|p||q| computation cost. The TPA handles
integrity verification in Audit and Verify, which results in
about |p|3 computation cost. For the previous [21], its compu-
tation costs of the user, the cloud and the TPA are m|p|2|q|,
n|p|2|q| and |p|4, respectively.

The above analytical results are collected in Table II. It can
be observed that: 1) compared with the state-of-the-art [21],

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT ID-BASED PROVABLE DATA POSSESSION PROTOCOL WITH COMPRESSED CLOUD STORAGE 1369

Fig. 3. The performance comparison between the proposed protocols and the classic [21]. (a) Cloud storage. (b) Communication cost. (c) Computation cost
of the KGC. (d) Computation cost of the data owner. (e) Computation cost of the cloud. (f) Computation cost of the TPA.

the storage and communication costs of our protocol are
almost reduced by half, which is due to no original data
blocks involved in cloud storage; 2) the proposed protocol has
much lower computation cost than the protocol in [21], since
our protocol is implemented by the basic algebraic operations
instead of the heavy ECC-based bilinear pairing.

B. Experimental Results

We construct the experiments on a laptop with Intel
i5-7200U CPU and 8-GB RAM, constructed using JAVA.
In our setting, the lengths of |p|, |q| and |l| are set to
1,024 bits, 160 bits and 320 bits. The protocol in [21] is
implemented by using the open-source jPBC [40]. To make
the security of our protocol and the protocol in [21] at the
same level, we determine the elliptic curve in [21] as y2 =
x3 + x with the 512-bits group elements and the 160-bits
group order [18], [40]. To guarantee the accuracy of division
operation, we use the internal class “BigDecimal” to store the
result of division operation, which can store a large number
of decimal digits. In addition, our hash function is imple-
mented by using the standard secure hash algorithms (SHA)
of National Institute of Standards and Technology (NIST).
Specifically, we repeatedly execute SHA to compute the hash
value of the input string concatenated with a random number
until the total bit length of these hash values exceeds the size
of the mapping field, and then determine the final hash value
by eliminating the exceeding bit values.

1) Storage Cost: Its experimental results are shown in
Fig. 3(a). It can be observed that the storage costs of these
two protocols are both linearly proportional to the number of

data blocks, which are as expected. We can also observe that
the storage cost of the proposed protocol is not only lower
than the protocol in [21], but also grows with the number
of blocks more slowly than the protocol in [21]. This also
implies that the proposed protocol can obtain more and more
storage gain with the number of blocks continues to increase.
The reason is that the proposed protocol only needs to store
the encrypted data blocks and a small-sized tag on the cloud,
while the protocol in [21] also needs to store original data
blocks at the same time. In addition, cloud storage is more
than the size of the original file blocks, which is due to the
encryption operations performed on these blocks.

2) Communication Cost: Its experimental results are pro-
vided in Fig. 3(b). It can be found that the communication
costs of these two protocols also increase with the number of
blocks, which however are a little higher than their storage
costs. The reason is that the communication cost also contains
the transmission of the challenge sequences and the integrity
proofs in addition to the outsourced data. Furthermore, the
communication cost of the proposed protocol is reduced to
some extent in comparison to the protocol in [21], and
the same observation also holds for the growth rate of the
communication cost relative to the number of blocks. It is
suggested that the gap of the communication costs between
these two protocols would become bigger and bigger as the
number of blocks increases. This is because that the proposed
protocol only outsources the encrypted data blocks and its
integrity proof only contains one aggregated values, while the
protocol in [21] outsources two data sets (i.e., file blocks and
their authenticators) and its integrity proof is composed of two
aggregated values (i.e., the aggregation of data blocks and

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

1370 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

authenticators). In addition, the communication cost is also
greater than the size of the user file, which is due to the same
reason as the storage cost.

3) Computation Cost: Its experimental results are given in
Figs. 3(c)-3(f). It can be learned that the proposed protocol
has computational advantages over the protocol in [21] from
the perspectives of the KGC, the user, the cloud, and the TPA,
which is as expected. Especially, the proposed protocol hugely
reduces the computational costs of the user, the cloud, and
the TPA by several orders of magnitude. For the KGC, the
computation costs of these two protocols are almost constant.
This is due to the fact that the KGC is utilized to setup
the whole system parameters, which has no relationship to
the number of blocks. For the user, the computation costs of
these two protocols are linearly proportional to the number of
data blocks, which is because that the user has to calculate
the encrypted value of each data block. In our protocol, the
computation cost of data recovery is higher than that of data
outsourcing, which is due to the division operation with a
high precision. For the cloud, the computation costs of these
two protocols grow with the number of the challenged blocks
incurred by the aggregation operations performed on the chal-
lenged data. For the TPA, the computation costs of these two
protocols also grow with the number of the challenged blocks.
The reason is that the challenged data indices are required to
be aggregated during integrity verification. It is worthy to note
that the proposed protocol can realize the off-line outsourcing
computation on 50 KB user files, the on-line challenge against
500 data blocks within 60 ms and 10 ms, both of which are
quite efficient.

VI. CONCLUSION

This paper first proposes a novel cryptographical primi-
tive: ID-based PDP with compressed cloud storage, and then
investigates a concrete protocol consisting of only basic alge-
braic operations. In comparison to the existing protocols, the
proposed protocol can greatly lower storage, communication,
and computation costs. We give strict proof to show that
our solution realizes the property of correctness, privacy,
unforgeability, and detectability. We also give an illustrative
example to show that the proposed protocol can be easily
extended to support the other practical functions by using
the primitive replacement technique. Finally, we evaluate the
performance of the proposed protocol through massive the-
oretical analysis and experimental simulation, which further
validates the effectiveness of the proposed protocol. In the
future, it is interesting to design more ID-based PDP protocols
with compressed cloud storage. It is also meaningful to study
other functional extensions of ID-based PDP with compressed
cloud storage in order to fit more application scenarios.

REFERENCES

[1] Top Threats to Cloud Computing: Egregious Eleven Deep Dive, Cloud
Security Alliance, Seattle, WA, USA, 2020, pp. 1–30.

[2] G. Ateniese et al., “Provable data possession at untrusted stores,”
in Proc. 14th ACM Conf. Comput. Commun. Secur. (CCS), 2007,
pp. 598–609.

[3] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” ACM Trans. Inf. Syst. Secur., vol. 17, no. 4,
pp. 1–29, 2015.

[4] F. Chen, T. Xiang, Y. Yang, C. Wang, and S. Zhang, “Secure cloud stor-
age hits distributed string equality checking: More efficient, conceptually
simpler, and provably secure,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2015, pp. 2389–2937.

[5] J. Zhang, Y. Yang, Y. Chen, and F. Chen, “A secure cloud storage system
based on discrete logarithm problem,” in Proc. IEEE/ACM 25th Int.
Symp. Quality Service (IWQoS), Jun. 2017, pp. 1–10.

[6] F. Chen, F. Meng, T. Xiang, H. Dai, J. Li, and J. Qin, “Towards usable
cloud storage auditing,” IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 11, pp. 2605–2617, Nov. 2020.

[7] A. Juels and B. S. Kaliski, “PORs: Proofs of retrievability for large
files,” in Proc. 14th ACM Conf. Comput. Commun. Secur. (CCS), 2007,
pp. 584–597.

[8] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc.
Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2008, pp. 90–107.

[9] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and
efficient provable data possession,” in Proc. 4th Int. Conf. Secur. Privacy
Commun. Netowrks, 2008, pp. 1–10.

[10] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” IEEE Trans.
Comput., vol. 62, no. 2, pp. 362–375, Feb. 2013.

[11] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo, “An efficient public
auditing protocol with novel dynamic structure for cloud data,” IEEE
Trans. Inf. Forensics Security, vol. 12, no. 10, pp. 2402–2415, Oct. 2017.

[12] H. Yan, J. Li, J. Han, and Y. Zhang, “A novel efficient remote
data possession checking protocol in cloud storage,” IEEE Trans. Inf.
Forensics Security, vol. 12, no. 1, pp. 78–88, Jan. 2017.

[13] B. Sengupta, A. Dixit, and S. Ruj, “Secure cloud storage with data
dynamics using secure network coding techniques,” IEEE Trans. Cloud
Comput., early access, Jun. 5, 2020, doi: 10.1109/TCC.2020.3000342.

[14] C. Hahn, H. Kwon, D. Kim, and J. Hur, “Enabling fast public auditing
and data dynamics in cloud services,” IEEE Trans. Services Comput.,
early access, Oct. 14, 2020, doi: 10.1109/TSC.2020.3030947.

[15] J. Yu, K. Ren, C. Wang, and V. Varadharajan, “Enabling cloud storage
auditing with key-exposure resistance,” IEEE Trans. Inf. Forensics
Security, vol. 10, no. 6, pp. 1167–1179, Jun. 2015.

[16] J. Yu, K. Ren, and C. Wang, “Enabling cloud storage auditing with
verifiable outsourcing of key updates,” IEEE Trans. Inf. Forensics
Security, vol. 11, no. 6, pp. 1362–1375, Jun. 2016.

[17] J. Yu and H. Wang, “Strong key-exposure resilient auditing for secure
cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 8,
pp. 1931–1940, Aug. 2017.

[18] H. Wang, Q. Wang, and D. He, “Blockchain-based private provable data
possession,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 5,
pp. 2379–2389, Sep./Oct. 2021, doi: 10.1109/TDSC.2019.2949809.

[19] Y. Li, Y. Yu, R. Chen, X. Du, and M. Guizani, “IntegrityChain: Provable
data possession for decentralized storage,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 6, pp. 1205–1217, Jun. 2020.

[20] Y. Xu, J. Ren, Y. Zhang, C. Zhang, B. Shen, and Y. Zhang, “Blockchain
empowered arbitrable data auditing scheme for network storage as a
service,” IEEE Trans. Services Comput., vol. 13, no. 2, pp. 289–300,
Mar. 2020.

[21] H. Wang, Q. Wu, B. Qin, and J. Domingo-Ferrer, “Identity-based remote
data possession checking in public clouds,” IET Inf. Secur., vol. 8, no. 2,
pp. 114–121, Mar. 2014.

[22] B. Wang, B. Li, and H. Li, “Panda: Public auditing for shared data with
efficient user revocation in the cloud,” IEEE Trans. Services Comput.,
vol. 8, no. 1, pp. 92–106, Jan./Feb. 2015.

[23] J. Li, H. Yan, and Y. Zhang, “Certificateless public integrity checking
of group shared data on cloud storage,” IEEE Trans. Services Comput.,
vol. 14, no. 1, pp. 71–81, Feb. 2021.

[24] Y. Zhang, J. Yu, R. Hao, C. Wang, and K. Ren, “Enabling efficient user
revocation in identity-based cloud storage auditing for shared big data,”
IEEE Trans. Dependable Secure Comput., vol. 17, no. 3, pp. 608–619,
May/Jun. 2020.

[25] H. Wang, D. He, and S. Tang, “Identity-based proxy-oriented data
uploading and remote data integrity checking in public cloud,”
IEEE Trans. Inf. Forensics Security, vol. 11, no. 6, pp. 1165–1176,
Jun. 2016.

[26] Y. Wang, Q. Wu, B. Qin, W. Shi, R. Deng, and J. Hu, “Identity-based
data outsourcing with comprehensive auditing in clouds,” IEEE Trans.
Inf. Forensics Security, vol. 12, no. 4, pp. 940–952, Apr. 2017.

[27] Y. Yu et al., “Identity-based remote data integrity checking with perfect
data privacy preserving for cloud storage,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 4, pp. 767–778, Apr. 2017.

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCC.2020.3000342
http://dx.doi.org/10.1109/TSC.2020.3030947
http://dx.doi.org/10.1109/TDSC.2019.2949809

YANG et al.: EFFICIENT ID-BASED PROVABLE DATA POSSESSION PROTOCOL WITH COMPRESSED CLOUD STORAGE 1371

[28] L. Zhou, A. Fu, G. Yang, H. Wang, and Y. Zhang, “Efficient certificate-
less multi-copy integrity auditing scheme supporting data dynamics,”
IEEE Trans. Dependable Secure Comput., early access, Aug. 4, 2021,
doi: 10.1109/TDSC.2020.3013927.

[29] Y. Li, Y. Yu, G. Min, W. Susilo, J. Ni, and K.-K. R. Choo, “Fuzzy
identity-based data integrity auditing for reliable cloud storage systems,”
IEEE Trans. Dependable Secure Comput., vol. 16, no. 1, pp. 72–83,
Jan./Feb. 2019.

[30] W. Shen, J. Qin, J. Yu, R. Hao, and J. Hu, “Enabling identity-based
integrity auditing and data sharing with sensitive information hiding for
secure cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 2,
pp. 331–346, Feb. 2019.

[31] H. Wang, D. He, J. Yu, and Z. Wang, “Incentive and unconditionally
anonymous identity-based public provable data possession,” IEEE Trans.
Services Comput., vol. 12, no. 5, pp. 824–835, Sep. 2019.

[32] L. Huang et al., “IPANM: Incentive public auditing scheme for
non-manager groups in clouds,” IEEE Trans. Dependable Secure
Comput., vol. 19, no. 2, pp. 936–952, Mar./Apr. 2022, doi:
10.1109/TDSC.2020.3004827.

[33] J. Xue, C. Xu, J. Zhao, and J. Ma, “Identity-based public auditing for
cloud storage systems against malicious auditors via blockchain,” Sci.
China Inf. Sci., vol. 62, no. 3, pp. 1–16, Mar. 2019.

[34] Y. Yang, Y. Chen, and F. Chen, “A compressive integrity auditing
protocol for secure cloud storage,” IEEE/ACM Trans. Netw., vol. 29,
no. 3, pp. 1197–1209, Jun. 2021.

[35] J. C. Cha and J. H. Cheon, “An identity-based signature from gap
Diffie-Hellman groups,” in Proc. Int. Workshop Public Key Cryptogr.,
vol. 2567, 2003, pp. 18–30.

[36] K. G. Paterson, “ID-based signatures from pairings on elliptic curves,”
Electron. Lett., vol. 38, no. 18, pp. 1025–1026, Nov. 2002.

[37] F. Hess, “Efficient identity based signature schemes based on pairings,”
in Selected Areas in Cryptograph. Berlin, Germany: Springer, 2003,
pp. 310–324.

[38] H. Jin, H. Debiao, and C. Jianhua, “An identity based digital signature
from ECDSA,” in Proc. 2nd Int. Workshop Educ. Technol. Comput. Sci.,
2010, pp. 627–630.

[39] V. Shoup, A Computational Introduction to Number Theory and Algebra,
2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2012.

[40] D. Angelo and I. Vincenzo. JPBC: Java Pairing Based Cryptogra-
phy. Accessed: Dec. 4, 2013. [Online]. Available: http://gas.dia.unisa.
it/projects/jpbc/

Yang Yang received the Ph.D. degree in com-
puter architecture from Wuhan University in 2018.
He is currently an Assistant Professor with the
Zhongnan University of Economics and Law, China.
His research interests include cloud computing secu-
rity and wireless physical communication.

Yanjiao Chen (Senior Member, IEEE) received the
Ph.D. degree in computer science and engineering
from The Hong Kong University of Science and
Technology in 2015. She is currently a Bariren
Researcher with Zhejiang University, China. Her
research interests include computer networks, wire-
less system security, cloud computing, and network
economy.

Fei Chen (Member, IEEE) received the Ph.D.
degree in computer science and engineering from
The Chinese University of Hong Kong. He joined
the College of Computer Science and Engineering,
Shenzhen University, China, as a Lecturer, in 2015.
His research interests include information and net-
work security, data protection, and privacy.

Jing Chen (Member, IEEE) received the Ph.D.
degree in computer science from the Huazhong
University of Science and Technology, Wuhan.
He is currently a Full Professor with the Com-
puter School, Wuhan University. He has published
more than 80 research papers in many interna-
tional journals and conferences, such as IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS,
IEEE TRANSACTIONS ON MOBILE COMPUTING,
INFOCOM, SECON, and TrustCom. His research

interests include cloud security and network security.

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 15:39:41 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2020.3013927
http://dx.doi.org/10.1109/TDSC.2020.3004827

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

