
Semantics-Aware Privacy Risk Assessment
Using Self-Learning Weight Assignment for

Mobile Apps
Jing Chen , Chiheng Wang , Kun He , Ziming Zhao,Member, IEEE,

Min Chen , Senior Member, IEEE, Ruiying Du, and Gail-Joon Ahn , Senior Member, IEEE

Abstract—Most of the existing mobile application (app) vetting mechanisms only estimate risks at a coarse-grained level by analyzing

app syntax but not semantics. We propose a semantics-aware privacy risk assessment framework (SPRISK), which considers the

sensitivity discrepancy of privacy-related factors at semantic level. Our framework can provide qualitative (i.e., risk level) and

quantitative (i.e., risk score) assessment results, both of which help users make decisions to install an app or not. Furthermore, to find

the reasonable weight distribution of each factor automatically, we exploit a self-learning weight assignment method, which is based on

fuzzy clustering and knowledge dependency theory. We implement a prototype system and evaluate the effectiveness of SPRISK with

192,445 normal apps and 7,111 malicious apps. A measurement study further reveals some interesting findings, such as the privacy

risk distribution of Google Play Store, the diversity of official and unofficial marketplaces, which provide insights into understanding the

seriousness of privacy threat in the Android ecosystem.

Index Terms—Android, semantics-aware, self-learning weight assignment, privacy risk assessment

Ç

1 INTRODUCTION

MOBILE computing has gained unprecedented popular-
ity, since users can run all sorts of applications (app)

on mobile devices to play, communicate, and work when-
ever and wherever they want. Almost all users store sensi-
tive data on their mobile devices, including contact lists,
SMS messages, and phone numbers. Due to the affinity
between users and their mobile devices [1], privacy leakage
has been considered as one of the critical challenges in
mobile computing and security.

Currently, Android warns users about the required
permissions when an app is installed or at runtime, trust-
ing that users can make the right decision. However, this
approach is inefficient to indicate potential privacy risks

since most users do not have enough technical knowledge
and patience to infer the potential privacy risks from the
permission descriptions. As a result, users prefer to
allow the required permissions and ignore its implica-
tions. Furthermore, privacy risks can be introduced by
malicious behaviors, which cannot be handled by check-
ing permissions.

To help users understand potential privacy risks int-
uitively, a number of approaches have been proposed to
measure apps’ risks and present the measured risks to
users. Most of the existing solutions only classify risks at
a coarse-grained level. For example, a binary risk indica-
tor is used to label each app as either normal or not [2],
[3], [4], [5], [6]. These solutions confuse users and are not
practical in helping them make decisions, because apps
with similar functions often have the same risk level. As
a more informative indicator, a detailed score is provided
to distinguish the risks of homogeneous apps. For exam-
ple, Peng et al. utilize probabilistic generative models to
develop risk scoring functions based on permissions
requested by apps [7], but it does not consider other fac-
tors. RiskMon [8] combines users’ coarse expectations
and runtime behaviors of trusted apps to generate a risk
score. However, they analyze apps at syntax level but not
at semantic level.

There are two challenges in evaluating the privacy risk of
an app. First, determining whether an app has the possibil-
ity to disclose users’ privacy is associated with multiple fac-
tors, including execution context, transmission destination,
etc. Each factor has its own potential privacy risk, which is
called sensitivity in this paper. For instance, the leakage of
location information may be more dangerous than that of

� J. Chen is with the School of Cyber Science and Engineering, Wuhan
University, Wuhan, Hubei 430072, China, Shenzhen Institute of Wuhan
University, Shenzhen, Guangdong 518000, China, and Science and
Technology on Communication Security Laboratory, Chengdu, Sichuan
610000, China. E-mail: chenjing@whu.edu.cn.

� C. Wang and K. He are with the School of Cyber Science and Engineering,
Wuhan University, Wuhan, Hubei 430072, China.
E-mail: chwang@whu.edu.cn, milloglobe@gmail.com.

� Z. Zhao is with the Rochester Institute of Technology, Rochester, NY
14623. E-mail: zhao@mail.rit.edu.

� M. Chen is with the Huazhong University of Science and Technology,
Wuhan, Hubei 430074, China. E-mail: minchen2012@hust.edu.cn.

� R. Du is with the School of Cyber Science and Engineering, and the Collab-
orative Innovation Center of Geospatial Technology, Wuhan University,
Wuhan, Hubei 430072, China. E-mail: duraying@whu.edu.cn.

� G.-J. Ahn is with the Arizona State University, Tempe, AZ 85281, and
also with the Samsung Research, Seocho-gu, Seoul 135-729, Republic of
Korea. E-mail: gahn@asu.edu.

Manuscript received 3 Mar. 2017; revised 29 Aug. 2018; accepted 12 Sept.
2018. Date of publication 24 Sept. 2018; date of current version 15 Jan. 2021.
(Corresponding author: Chiheng Wang.)
Digital Object Identifier no. 10.1109/TDSC.2018.2871682

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021 15

1545-5971� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-8153-5909
https://orcid.org/0000-0002-8153-5909
https://orcid.org/0000-0002-8153-5909
https://orcid.org/0000-0002-8153-5909
https://orcid.org/0000-0002-8153-5909
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-4271-1666
https://orcid.org/0000-0002-4271-1666
https://orcid.org/0000-0002-4271-1666
https://orcid.org/0000-0002-4271-1666
https://orcid.org/0000-0002-4271-1666
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

device ID. At the same time, we need to determine whether
the data is sent out of the device, which is critical to the pri-
vacy risk assessment. Thus, we should consider more fac-
tors in both syntax and semantic levels. Second, the actual
influences of each factor are different and the weight assign-
ment for multiple factors is another challenging problem.
Obviously, manually specifying or averaging the weights
on different factors is inappropriate. Therefore, the privacy
risk assessment should also include a reasonable and sys-
tematic weight assignment method.

In this paper, we propose a semantics-aware privacy risk
assessment framework for Android apps, called SPRISK.
SPRISK considers the resource diversity in semantic level,
and concerns APIs’ execution context by dealing with the
trigger conditions of data transmissions. Meanwhile, SPRISK

also takes the transmission destination into account, while
the outgoing private data has a higher risk than the one
staying on the devices. SPRISK does not only offer qualitative
results, risk level, but also provides quantitative results, risk
score. For an app, the risk level presents a coarse-grained
division, and the risk score indicates how risky the app is in
a fine-grained view. Furthermore, to find the reasonable dis-
tribution of weights for various factors, we propose a novel
self-learning weight assignment method, which can learn
the weights from training apps automatically.

We use SPRISK to evaluate the privacy risk distribution of
real-world Android apps and malicious apps. Compared to
Androguard [9], the proposed approach shows considerable
improvement of accuracy. Moreover, our evaluation of
SPRISK also discloses interesting and valuable findings
related to risk distribution of Android marketplaces.1

The contributions of this paper are summarized as
follows:

� We propose a novel semantics-aware risk assess-
ment framework to evaluate the privacy risk of
Android apps. It analyzes apps in semantic level
while considering contextual API dependency corre-
lations. Our framework provides qualitative and
quantitative results, which help users understand
and choose apps before installing those apps.

� Based on fuzzy clustering and knowledge depen-
dency theory, we propose a self-learning weight assi-
gnment method to measure each factor’s significance
automatically. Trained with 10,000 apps, the resulting
weight distribution captures the actual influences of
various factors, which makes the assessment model
more reasonable.

� We implement SPRISK and assess the privacy risks on
192,445 normal apps as well as 7,111 malicious apps.
The experimental results demonstrate the effective-
ness of our weight assignment method and the
accuracy of SPRISK. A measurement study further
presents some important issues, such as the risk dis-
tribution of Google Play Store and the diversity of
official and unofficial marketplaces.

The remainder of the paper is organized as follows.
Section 2 presents an overview of the problem and provides

the architectural overview of SPRISK. Section 3 describes the
design of SPRISK. Section 4 presents the self-learning weight
assignment method. Section 5 presents the performance of
SPRISK on a large number of samples and elaborates the
experimental results, followed by a brief discussion on
SPRISK in Section 6. Section 7 describes the related work. In
Section 8, we conclude the paper.

2 OVERVIEW OF SPRISK

In this section, we present an overview of the problem and
the architecture of our proposed solution.

2.1 Problem Statement

In Android, the sensitive data transmission contains two
necessary parts: sources and sinks, which are invoked by var-
ious callback methods. Specifically, sources mean the APIs
which acquire sensitive data, and sinks indicate the APIs
which deliver sensitive data. From sources to sinks, there
exist some data transmission paths (including callbacks,
system APIs, and other statements), called sensitive data
flows. When assessing the privacy risk of Android apps, tra-
ditional approaches may design precise methods to find
more sensitive data-flows. However, they ignore two
important facts: what the privacy is and how it is used. Obvi-
ously, the leakages of different data (e.g., location and
device information) have different severities, so it is more
reasonable to distinguish them in a fine-grained manner. In
addition, sending privacy data out of the device has a
higher risk than moving them on the same device. Hence,
the transmission destination may also affect the assessment
result. Furthermore, it is crucial to estimate whether the
data transmissions follow users’ intention or not, thus, the
entry points of callback methods also have an impact on the
privacy risk assessment.

To motivate our work, we analyzed the sensitive data
flows of two examples, as shown in Fig. 1. The first app
GPSSMSSpy (MD5:ebae9b3a1078daa2d1a74d566780e26c) is
a malware collected in the Malgenomeproject [10], which
accesses users’ locations by sources getLatitude() (L1)
and getLongitude() (L2). Then, it sends these informa-
tion to remote server by a sink sendTextMessage() (L3).
The data transmission is triggered in onCreate() and
onResume(), which indicates that users’ locations are
accessed automatically. The second app Wifilocating
(MD5:21b64328e450afad7845d1caceda26da) is an app col-
lected from Google Play Store, which accesses device’s
informations (i.e., device id and WiFi configuration) by
sources getSubscriberId() (L4) and getConnectio-

nInfo() (L5). Once users click the “Search” button
(onClick()), it sends the collected information to a remote

Fig. 1. Two motivating examples.

1. The service of SPRISK is available at http://csp.whu.edu.cn/
SPRisk

16 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

http://csp.whu.edu.cn/SPRisk
http://csp.whu.edu.cn/SPRisk

server by httpClient.execute() (L6) and stores them
locally by a sink Log.i() (L7) at the same time.

When assessing the privacy risk of these two apps, we
should consider three factors: 1) the importance of data;
2) the trigger condition of data access; and 3) the distinction
of data transmission. No prior work takes all three facts into
consideration when evaluating the privacy risk of Android
apps. In SPRISK, to address the aforementioned problems
and complements existing vetting techniques, the following
design goals are considered:

� Semantic-based Assessment. Our approach evaluates
the privacy risk of an app in semantic level. Instead
of relying on the frequency of sensitive data, SPRISK

performs static program analysis for the trigger con-
dition and destination of sensitive data flow and also
considers the sensitivity of different data and
permissions.

� High Adaptability. Our approach must be scalable to
present different privacy risk levels and factors. To
satisfy different demands, SPRISK needs to provide
both qualitative and quantitative assessment results,
which can classify privacy risk into different levels
while concerning various factors.

� Reasonable Weight Assignment. The importance of
each factor must be considered by designing a
self-learning weight assignment method, which is
more reasonable for evaluating apps’ privacy risk.
Through analyzing diverse apps in the wild, SPRISK

should measure the dependency of each factor and
learn the weight distribution from the training data
automatically.

2.2 Architectural Overview of SPRISK

SPRISK consists of the following four major components: (i)
Factor Extraction; (ii) Sensitivity Distribution Matrix Gener-
ation; (iii) Weight Assignment and (iv) Privacy Risk Assess-
ment, as illustrated in Fig. 2.

(i) Factor Extraction. This component performs static
program analysis to extract sensitive data transmis-
sion paths and permissions. In addition, our pro-
gram analysis obtains more contextual information
in semantic level. We consider the sensitivity of pri-
vacy data for providing the fine-grained assessment.

(ii) Sensitivity Distribution Matrix Generation. After
extracting the factors, we exploit a matrix-based
scheme to address the complexity challenge of multi-
ple factors with various sensitivities. The result of
this module is expressed via a sensitivity distribu-
tion matrix that describes the statistics of each
factor’s privacy risk.

(iii) Weight Assignment. Given predefined factors, this
module finds the reasonable weight distribution by
designing a self-learning weight assignment method.
Based on fuzzy clustering and knowledge depen-
dency theory, this module produces a weight coeffi-
cient vector, which represents the significance of
each factor.

(iv) Privacy Risk Assessment. Once the sensitivity distribu-
tion matrix and weight coefficient vector are gener-
ated, this module evaluates the privacy risk of an
app with qualitative and quantitative assessments.
The risk level and risk score are provided in this
module to intuitively help users understand the
result.

3 DESIGN OF SPRISK

3.1 Factor Extraction

We define the Evaluation Set V ¼ fv1; v2; . . . ; vng, where vi
denotes the ith risk level. Inspired by prior works [8], [9],
we define the evaluation set with a symmetric bipolar scale,
namely V ¼ fv1; v2; v3; v4; v5g = {very low, low, average,
high, very high}, which can also help readers understand
the proposed framework.

The Factor Set (U ¼ fU1; U2; . . . ; Umg) represents the pri-
vacy-related factors. We use a static analysis method to
extract these factors from Android apps. More specifically,
we focus on the sensitive data flows and the requested per-
missions, which can be obtained by a broad analysis over
the apps’ content. The detailed descriptions of these factors
are as follows.

3.1.1 U1 Source

In Android, a large variety of data (e.g., SMS, Contact, and
Location) should be protected, and most of these sensitive
data can be accessed by specific APIs. For example, in the
scenario of Fig. 1, we have three source methods: getLati-
tude(), getLongitude(), and getDeviceId(). By

Fig. 2. Architecture overview of SPRISK.

CHEN ETAL.: SEMANTICS-AWARE PRIVACY RISK ASSESSMENT USING SELF-LEARNING WEIGHTASSIGNMENT FOR MOBILE APPS 17

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

calling each source, an app can acquire the corresponding
data, e.g., calling getLatitude() will return the location
area code. As mentioned before, different privacy data
have different risks, so the sources should be assigned
with different sensitivities, according to their potential pri-
vacy risks.

To have a comprehensive list of sources, we utilize
SuSi [11] to extract the privacy-related data, which includes
18,077 sources and 8,315 sinks. Due to the volume of this
data, it is impractical to assign the sensitivity level to each
API manually. In this paper, instead of assigning the sensi-
tivity to each source individually, we consider the privacy
risks of their categories. Specifically, we classify the identi-
fied sources into several categories based on SuSi, which
can offer additional information about what has been leaked.
For example, the API getLatitude() belongs to the cate-
gory LOCATION, and the API getDeviceId() belongs to
the category IDENTIFIER.

Next, to determine the sensitivity of each category, we
manually investigate the report of DCCI [12], which ranks
resources by sensitivity. For example, ACCOUNT is the
most concerned category from the users’ perspective. Thus,
its sensitivity is very high. Similarly, the sensitivity of cate-
gory INFORMATION is high, etc. The sensitivity distribu-
tion is shown in Table 1.

Though averaging the sources’ sensitivity may not be the
best way towards different users’ preference (i.e., users may
have different views on the leakage damage of resources),
the approach mentioned above is reasonable enough to
demonstrate our model. Moreover, distinguishing the pri-
vacy-relevant preference of users would require a dedicated
analysis for the users’ cognitive experience, which is still a
general, open problem for the community, and beyond the
scope of this work.

3.1.2 U2 Sink

The sinks are the potential leakage exits, which indicate the
target of data transmission, such as sending SMS messages
(sendMessage()) and writing information to log files
(Log.v()). In this work, we classify those methods into
two categories: leave or not leave the device. Hence, there are
mainly two sensitivity levels for sinks. If a sink sends data
out of the device, the sensitivity should be high. On the con-
trary, if data stays on the device, the data transmission has a
relatively small risk and the sensitivity should be low.

Similarly to sources, there are also a large number of
sinks in Android. Therefore, to determine the sensitivity of
each sink, we also consider the API list and categories based
on SuSi, as shown in Table 1. Specifically, according to the
category of a sink method, we can determine where the cor-
responding data have been sent and then assign the sink’s
sensitivity. For example, the sink sendMessage() belongs
to the category SMS_MMS, and it sends the data out of the
device. Hence, its sensitivity is high. The sink Log.v()

belongs to the category FILE. Because data stays on the
device, its sensitivity is low.

3.1.3 U3 UI_Invoke & U4 State_Change

Not all sensitive data transmissions indicate a privacy leak-
age, it is necessary to extract whether it is users’ intention to
transmit. We consider the condition of a data transmission
event by defining two triggers: UI_Invoke and State_Change.
The UI_Invoke methods are related to the app’s view (e.g.,
onClick()), which are typical user interactive APIs. From
a security analyst’s perspective, it is acceptable that private
data are authorized by the user. In other words, the UI_
Invoke method can decrease the privacy risk of an app.
Conversely, the State_Change methods are invoked without

TABLE 1
The Sensitivity Distribution of Source, Sink, and Permission

18 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

users’ approval (e.g., onGpsStatusChanged()). A mali-
cious app developer commonly exploits background call-
backs to perform sensitive functionalities, and increases the
possibility of privacy leakage.

Unlike the sensitivity distribution of sources and sinks,
we cannot determine the sensitivity of UI_Invoke and State_
Change by simply using their appearance. Indeed, those trig-
ger conditions act on the following source or sink methods.
For both sources and sinks, the UI_Invoke can decrease the
sensitivity, while the State_Change can increase the sensitiv-
ity. For example, assuming that the sensitivity of source is
average, if it is called by UI_Invoke, the sensitivity will be
decreased to low. However, when it is triggered by State_-
Change, the sensitivity will be increased to high. As a result,
SPRISK can evaluate the privacy risk of an app in semantic
level, rather than simply consider the sensitivity of data.

Note that, the UI_Invoke factor become inefficient when
malware masquerades as a normal app and clicks a button
before performing malicious behaviors. Therefore, simply
detecting the appearance of UI_Invoke methods is not suffi-
cient to declare a privacy violation. However, encoding user
preference and expectations inside automated analysis is
difficult, which needs the participation of users. To address
this problem, we use a strict rule as follows: we consider a
user-intended data transmission when an app access sensi-
tive information with notifying the user through a prompt
or license agreement. We check if a notification is displayed
to the users in the causal taint tracking path from source to
sink. Then, we also try to determine if the notification con-
tains messages informing the user of data collection or
requesting permission to transmit the data in question. If
the condition is satisfied, the UI_Invoke factor is confirmed.

3.1.4 U5 Sen_Path

We also take the whole transmission path called Sen_Path
into account. An app usually contains multiple sensitive
data flows, and there may exist many (source, sink) pairs
with their own sensitivities. For example, there exist two
transmission paths (getSmsMessage()! � � � ! Log.v()

and getString() ! � � � ! sendMessage()). The sensi-
tivity of getSmsMessage() is higher than that of get-

String(), while Log.v() has a lower risk than
sendMessage(). If we evaluate the sources and sinks indi-
vidually, the inner relationship between them will be lost,
and the privacy risk of the analyzed app may be inaccurate.
In particular, if we map getSmsMessage() with get-

String() incorrectly, the app will be evaluated with a
higher privacy risk level than its actual risk level. Therefore,
SPRISK also treats the sensitivity transformation rule of dif-
ferent combinations as an indispensable factor.

There exist two transformation rules of Sen_Path, includ-
ing remain intact and increase the risk. In fact, the sensitiv-
ity of a Sen_Path is based on its source, while it may be
affected by the risk of its sink. For example, if the sensitivity
of a sink is low (i.e., the privacy data has not been sent out
of the device), the Sen_Path has the same sensitivity with its
source. Otherwise, if the sensitivity of sink is high, the sensi-
tivity of Sen_Path will be higher than that of the source.
Having both factors, UI_Invoke and State_Change, the evalu-
ation of the whole transmission path further enhances the
semantics-aware capability of SPRISK.

As shown in Fig. 3, our approach adopts multi-level eval-
uation. First, the privacy risks of sensitive data and transmis-
sion destinations are determined (U1 and U2), which offer
information on how many data and channels have been
accessed. Second, to capture the APIs’ execution context, we
look into the trigger conditions of each data transmission
path (U3 and U4), which provide clues on how these data
operations are invoked. Finally, we evaluate the sensitivity
of the entire path (U5), which is necessary to determine what
privacy has been leaked to where. Although the basic mea-
surement is the sensitivity of sources and sinks, the appear-
ance of other factors are independent and should be treated
simultaneously. In such away,we can have a comprehensive
privacy risk evaluation of the sensitive data flows in an app.

3.1.5 U6 Permission

Permission is one of the security mechanisms in Android [13],
which controls the privacy- and security-relevant parts of
Android’s rich API. To access sensitive data, an app should
require corresponding permissions at first, and the user is
notified during installation about what permissions an app
will request. If developers routinely requestmore permissions
than they require, the bug or vulnerability of the overprivi-
leged app would increase the potential privacy risk. Thus,
SPRISK treats permission as an important factor (U6).

To implement permission assessment, we define the sen-
sitivity by the group to which the permission belongs. In
Android, each permission has been assigned to a protection
level, i.e., normal, dangerous, signature, and signatureOr-
System. Unfortunately, this classification policy cannot be
used for SPRISK directly. As dangerous permissions may not
be related to users’ privacy, there exists no congruent rela-
tionship between the protection level and the risk level. For
example, the BRICK is a dangerous permission, which is
able to disable the device. However, from the perspective of
privacy protection, the possibility of leakage is small.

Therefore, we define a classification rule by the impor-
tance of permission, which is determined by a large number
of questionnaires [12], instead of protection levels. Specifi-
cally, we classify the permission groups into three levels:
Core, Important, and Normal, as shown in Table 1. For exam-
ple, a great percentage of users concern the leakage of SMS,
thus, the permission group MESSAGES belongs to the Core
level, and the sensitivity is very high. In contrast, few peo-
ple worry about the leakage of Bluetooth, thus, the permis-
sion group SENSORS belongs to the Normal level, and the
sensitivity is low.

3.1.6 U7 Third_Party Library

Third-party libraries on Android have become a common
part of apps and can provide convenience for app develop-
ers, such as single-sign-on service, advertisement library,

Fig. 3. The multi-level evaluation of the sensitive data transmission.

CHEN ETAL.: SEMANTICS-AWARE PRIVACY RISK ASSESSMENT USING SELF-LEARNING WEIGHTASSIGNMENT FOR MOBILE APPS 19

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

and online social media. However, as illustrated by a num-
ber of prior studies [6], [14], third-party libraries also
increase the host apps’ attack surface and have become
security and privacy hazards for end users. For example,
third-party libraries can leak users’ SMS information,
expose their host app’s privileges, or track users’ locations.
Given the high popularity of third-party libraries and their
serious impacts on users’ privacy, it is necessary to take the
sensitivities of third-party libraries into consideration.

To detect the privacy risk of third-party libraries, the first
task is to identify popular Android libraries as many as pos-
sible. In this work, we utilize LibScout [6] to build a library
database that contains the ground truth of each available
library version. Specifically, the collected database contains
164 libraries with 2,065 versions. In particular, advertising
libraries are one of the most prevalent library types for
Android, which have attracted many researchers to study
the risk of them [15], [16], [17], [18]. Therefore, we further uti-
lize MAdScope [18] to retrieve 101 advertising libraries that
cover themajority of existingAndroid advertising platforms.

Instead of relying on the number of third-party libraries,
we also consider the gap between current and latest versions.
As illustrated in LibScout [6], app developers only slowly
adopt new library versions, exposing their end-users to large
windows of vulnerability. However, not all version upgrade
focuses on the repair of bugs, but in some cases tend to
deliver new features. Therefore, we must define what we
consider to be a bug or vulnerability upgrade. To this end,
we further analyze the CHANGELOG file of each version,
and look for some specific words. For example, if a new ver-
sion has fixed some bugs of an old version, it may include
words like “Fixed”, “Crash”, and “incorrect”. Specifically,
we collect the CHANGELOG file of third-party libraries by
utilizing Scrapy [19]. By checking each file been collected
manually, we have saved 1,865 CHANGELOG files of 135
libraries. Through analyzing these files, we further extract
static strings that typically appear in stable and test versions
by parsing the CHANGELOGfiles. At last, we have collected
56 bug-fix related keywords and phrases in total.

When evaluating the sensitivity of third-party library, we
first determine if the current version is the latest version. If
not, we further determine whether the latest version has
fixed some known bugs or not. To this end, we utilize LibSc-
out [6] to identify the version of extracted third-party
library. Specifically, if the version is latest one, its sensitivity
should be very low. If the version is not latest one and the
version upgrade is only to deliver new features, then its sen-
sitivity should be normal. If the version upgrade is related to
bug fix, then its sensitivity should be very high. For
instance, the latest version of an advertising library is
v2.1.0, while the evaluated app is equipped with v1.2.2

version. By mapping the predefined database, we find that
the latest version has fixed several bugs of old ones. Thus,
the sensitivity of this current advertising library version in
the evaluated app is very high.

3.2 Sensitivity Distribution Matrix Generation

To represent the above-mentioned factors, we define Sensi-
tivity Distribution Matrix (SDM) which can reflect the pri-
vacy risks of the data flows and permissions by a real
matrix. A formal definition is presented as follows:

Definition 1. A Sensitivity Distribution Matrix (Sm�n) is a
matrix over a set of pre-defined factors and sensitivities, where:

� m denotes the number of factors, n is the number of
risk levels. In this work,m ¼ 7 and n ¼ 5.

� In Sm�n, each row si ¼ ðsi1; si2; . . . ; sijÞ represents the
sensitivity distribution of factor i, and sij denotes the
number of APIs or permissions in the context of factor
Ui with the risk level vj (0 < j � n).

Table 2 presents an example of SDM. The sample app
contains 89 sensitive data flows and requests 4 permissions.
The sensitivity distribution of sources is shown in the first
row. There are 89 sources in total, which have different sen-
sitivities, while 8 of them are very low, 62 of them are low,
19 of them are very high, and none of them is average or
high. Hence, we can get s1 ¼ ð8; 62; 0; 19; 0Þ. By the same
method, the sensitivity distribution of other factors can also
be constructed.

Among the factors mentioned above, determining the
sensitivity distribution of Sen_Path is the non-trivial task. As
introduced in Section 3.1.4, the sensitivity of each Sen_Path is
determined by the corresponding source and sink in the data
flow.Note that the sensitivities of sources and sinks are influ-
enced by the trigger conditions. For example, there exists
one data flow, OnClick() ! getSmsMessage() . . .
onGpsStatusChanged() ! log.v(). The sensitivity of
getSmsMessage() is very high, while it is triggered by
OnClick(), thus, the sensitivity of source is decreased to
average. The sensitivity of log.v() is average, while it is
triggered by onGpsStatusChanged(), thus, the sensitivity
of sink is increased to high. As a result, the sensitivity of this
data flow will be higher than that of source, i.e., increasing
from average to high.

3.3 Privacy Risk Assessment

In this section, we introduce the privacy risk assessment
model, which is essential to reveal the privacy risk of an
app. We present a framework, which consists of two mod-
ules for qualitative and quantitative assessments. In the
qualitative assessment, SPRISK attempts to examine the risk
level of an app automatically, e.g., very high or very low.
In the quantitative assessment, SPRISK takes the risk level as
input, and produces the risk score of an app.

Qualitative Assessment. For the qualitative assessment, we
build a single-factor evaluation matrix A ¼ ðaijÞm�n from
SDM at first. A is constituted by the single-factor evaluation
vectors. The evaluation of each factor is denoted by a vector
ai ¼ ðai1; ai2; . . . ; ainÞ, where aij ¼ sijPn

j¼1 sij
and sij is the

element of SDM.

TABLE 2
A SDM Example

Factor Set v1 v2 v3 v4 v5

Source 8 62 0 19 0
Sink 75 0 0 0 14
UI_Invoke 31 7 0 5 0
State_Change 0 2 5 0 0
Sen_Path 0 70 0 19 0
Permission 0 0 0 2 2
Third_Party Library 2 0 1 0 0

20 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

Next, we perform the qualitative assessment by the
weight coefficient vector w and the single-factor evaluation
matrix A of an app.w ¼ ðw1; w2; . . . ; wmÞ denotes the weight
distribution of the factor set, which will be described in
Section 4. In particular, the qualitative assessment result is
denoted by a risk distribution vector b ¼ ðb1; b2; . . . ; bnÞ,
where bi indicates the possibility of each risk level vi, and it
is calculated as follows:

b ¼ w � A ¼ ½w1; w2; . . . ; wm� �
a11 � � � a1n
..
. . .

. ..
.

am1 � � � amn

264
375: (1)

The elements in vector b are normalized and their sum is
1. According to the principle of maximum subordination,
the biggest bi in b should be the result of qualitative assess-
ment, which means that the evaluated app has the most
possible with the risk level vi.

Quantitative Assessment. For the quantitative assessment,
we introduce a score vector c, which is a n-dimensional vec-
tor c ¼ ðc1; c2; . . . ; cnÞ and ci (0 � ci � 100) is a score corre-
sponding to each risk level vi. The larger the score is, the
higher risk an app has. In our example, n ¼ 5 and we have
c ¼ ð0; 20; 40; 60; 100Þ. Specifically, ci ¼ 0 indicates that the
analyzed app has no privacy risk at all, while ci ¼ 100
means that the possibility of privacy leakage is extremely
high. Finally, we adopt the following function to calculate
the risk score f of an app

f ¼ b � cT ¼
Xn
i¼1

bici: (2)

In practice, the quantitative assessment results can
help an app marketplace manager to rank the privacy
risk of apps. Based on the risk ranking, the marketplace
manager can design an enhanced recommendation sys-
tem from the perspective of users’ privacy. Moreover,
SPRISK offers a significant assistance for users to decide
whether a new app should be installed or not. Given sev-
eral candidate apps that could provide similar services,
users can choose the one which has the minimum privacy
risk score.

4 SELF-LEARNING WEIGHT ASSIGNMENT

In this section, we design a self-learning weight assignment
method to evaluate weights of various factors. The main
idea is that when we remove a factor, the more significant

the influence is, the higher weight should be assigned to the
factor. To achieve this goal, our approach contains two
phases: fuzzy clustering and knowledge dependency. As
illustrated in Fig. 4, in the fuzzy clustering phase, SPRISK

takes apps as input and classifies the dataset by the com-
plete factor set automatically. In the knowledge dependency
phase, our approach performs the classification by remov-
ing different single factor in turn. As a result, we can obtain
the dependency between factors and factor sets to generate
a weight coefficient vector.

4.1 Fuzzy Clustering

To classify apps into different risk levels, we first design a
clustering method. The discrepancies of various privacy
risks are vague, there is no clear boundary existing. There-
fore, our first module, called Fuzzy Clustering, is based on
the soft clustering method. In soft clustering, data elements
can belong to more than one cluster. More specifically, the
process can be divided into three stages, as in Fig. 4.

Stage 1: Data Pre-Processing (Step:�1). Themain task in this
stage is to process the original data to meet the requirements
of fuzzy clustering. Let X ¼ fx1; x2; . . . ; xug be the dataset,
and u is the number of samples. As mentioned in Section 3.2,
we represent each app xi by a SDM. Then, we quantify the
risk score xij of each factorUj for the sample xi as

xij ¼
Xn
k¼1

ajkck ðj ¼ 1; 2; . . . ;mÞ; (3)

where ajk is the element of the single-factor evaluation
matrix A of sample xi, and ck is the element of score vector c
introduced in Section 3.3.

As a result, X is represented by a real matrix
R ¼ ðxijÞu�m. Then, we continue to normalize each element

xij into ½0; 1� as

x0ij ¼
xij � �xj

tj
ði ¼ 1; 2; . . . ; u; j ¼ 1; 2; . . . ;mÞ; (4)

where �xj ¼ 1
u

Pu
i¼1 xij and tj ¼

ffi
1
u

Pu
i¼1ðxij � �xjÞ2

q
.

Stage 2: Fuzzy Equivalence Matrix Generation (Step: �2 -�3).
From Fig. 4, we observe that this stage contains two steps.
First, we transform the matrix R to a fuzzy similarity matrixeR ¼ ðrijÞu�u, where rij denotes the similarity between two
samples xi and xj. Formally, this similarity rij can be
defined as

Fig. 4. The weight assignment pipeline.

CHEN ETAL.: SEMANTICS-AWARE PRIVACY RISK ASSESSMENT USING SELF-LEARNING WEIGHTASSIGNMENT FOR MOBILE APPS 21

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

rij ¼
Pm

k¼1 jx0ik � �xijjx0jk � �xjjffiPm
k¼1ðx0ik � �xiÞ2

q
�

ffiPm
k¼1ðx0jk � �xjÞ2

q ; (5)

where �xi ¼ 1
m

Pm
k¼1 x

0
ik and �xj ¼ 1

m

Pm
k¼1 x

0
jk.

Second, we obtain the fuzzy equivalence matrix R	 fromeR. To be specific, we find the least k (k 2 N) that satisfieseRð2kÞ � eRð2kÞ ¼ eRð2kÞ. Then, R	 ¼ eRð2kÞ. Note that R	 ¼ ðdijÞu�u
is a symmetry matrix, dij ¼ 1 (i ¼ j), and dij < 1 (i 6¼ j).

Stage 3: Data Classification (Step: �4). In this stage, we
deduce the classification result based on R	. Let �
(0 � � � 1) denote the membership of an app to a certain
risk level, which controls the classification criteria. If
dij > �, the samples xi and xj should be classified into one
level. Intuitively, through adjusting the value of �, we can
have different clustering results. In the most rigorous case
(� ¼ 1), every app is self-contained and different apps are
never classified into one risk level. When we relax the
restriction (e.g., � ¼ 0:8), the samples, whose similarity are
greater than 80 percent will fall into one cluster.

To find the optimal classification, we set different � and
measure the diversities of results. Our approach utilizes F-
test [20] to achieve this goal, which shows the ratio between
inner-group mean square deviation and intra-group mean
square deviation. Let r denote the number of classes, which
are generated by �. nj indicates the number of samples in
the jth class. The samples in the jth class is labeled as
x
ðjÞ
1 ; x

ðjÞ
2 ; . . . ; xðjÞnj . Thus, the cluster center of the jth class can

be represented as �xðjÞ ¼ ð�xðjÞ1 ; �x
ðjÞ
2 ; . . . ; �xðjÞm Þ, where �x

ðjÞ
k is the

average value of the kth feature, thus

�x
ðjÞ
k ¼

1

nj

Xnj
i¼1

x
ðjÞ
ik ðk ¼ 1; 2; . . . ;mÞ:

Formally, the F-test can be defined as

F ¼
Pr

j¼1 nj k �xðjÞ � �x k2 =ðr� 1ÞPr
j¼1

Pnj
i¼1 k xðjÞi � �xðjÞ k2 =ðn� rÞ

;

where

k �xðjÞ � �x k¼
ffiXm
k¼1
ð �xk
ðjÞ � �xkÞ2

s
:

The larger the F-test is, the better the classification is. In fact,
a large F-test indicates that the inner-group difference is
great, while the intra-group difference is small.

4.2 Knowledge Dependency

In this section, we measure the factor dependency, namely
factor weight, based on the knowledge dependency the-
ory [21]. It provides a measurement to evaluate the depen-
dency of different attribute subsets. The process is depicted
in Algorithm 1, which takes the dataset X as input and pro-
duces the weight coefficient vectorw.

First of all, we leverage the clustering method (i.e.,
equClassifyðÞ) described in Section 4.1 to classify the origi-
nal dataset. After this step, we obtain the optimal classifica-
tion Y ¼ fY1; Y2; . . . ; Ysg onX.

Second, to determine the importance of each factor
(Step�5), we define the concept of Factor Dependency (FD) as

Definition 2. Given two factor sets U and P , we say that U
depends on P with a degree k (0 � k � 1), if and only if

k ¼ gðP; UÞ ¼ jPOSP ðUÞj
jXj ; (6)

where POSP ðUÞ is a set of samples classified by U as well as P ,
and jXj denotes the cardinality of the dataset. If k ¼ 1, we say
that U completely depends on P , which means that P is equiv-
alent to U . If 0 < k < 1, we say that U partially depends on
P , and if k ¼ 0 we say that U is completely independent of P .

Third,we narrow the factor setU toCi by removing the fac-
tor Ui, and construct a new dataset �X fromX (Step�6). Based
on Ci and �X, we perform equClassifyðÞ again to achieve the
classification Ei ¼ fE1; E2; . . . ; Elg. To calculate the depen-
dency between Ci and U , we realize the method depDegreeðÞ
by Equation (6), i.e., gðCi;UÞ ¼ jPOSCi

ðUÞ j = jX j , where
POSCi

ðUÞ ¼ [fEi; Y g. Then, we can obtain the importance of
the factorUi as

SGF ðUiÞ ¼ 1� gðCi;UÞ; (7)

where gðCi; UÞ is the dependency of the remaining factor set
Ci from U after removing the factor Ui.

Finally, we leverage the method valueNormðÞ to normal-
ize the weight coefficient vector w ¼ ðw1; w2; . . . ; wmÞ in
Step �7 , i.e., wi ¼ SGF ðUiÞ=

Pm
i¼1 SGF ðUiÞ. Note that it is

quite easy to extend our current framework to complement
more factors, such as dynamic code, binary files etc.

Algorithm 1. The Weight Assignment Algorithm

Input:X as the original dataset.
Output: w as the result of weight coefficient vector.
Y equClassifyðX;UÞ
for i ¼ 1 tom do
Ci :¼ U � fUig
�X construct a new dataset fromX
Ei equClassifyð �X;CiÞ
if lengthðEÞ 6¼ 0 then
g depDegreeðY;EiÞ

end
weight½i� :¼ 1� g

end
w valueNormðweightÞ
return w

5 EVALUATION AND MEASUREMENT

5.1 Dataset

We conducted experiments with two datasets, including
malware dataset and normal app dataset. We collected the
malware dataset from three research projects (Drebin [3],
DroidAnalytics [22], and Malgenomeproject [10]). We
removed repeated samples and had 7,111 malware in total,
as shown in Table 3. To the best of our knowledge, this is
one of the largest datasets that has been used to evaluate the
privacy risk on Android.

22 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

To collect normal app dataset, we crawled five representa-
tive marketplaces, including the official Android market
(Google Play Store [23]), and four third-party Android mar-
kets (Anzhi, Anruan, Nduoa, and Gfan). We used Play-
Drone [24] to obtain 172,445 apps from Google Play Store.
For other four markets, we also built a crawler on the basis of
Scrapy [19], and collected 5,000 samples from each market.
Our resulting app corpus is described in Table 4. Note
that we call “normal app” instead of “benign app”, because
the collected dataset may contain some malicious apps
which were undetected yet. However, we focus our effort on
the evaluation of privacy risk, not the detection of malware,
thus those noisy apps would not be a problem for our
approach.

We implemented the prototype of SPRISK on the basis of
FlowDroid [25] with 2,437 lines of code (LOC) in Java. In par-
ticular, the weight assignment algorithm was implemented
in Java andMatlab together, which introduces 924 LOCs.

5.2 Effectiveness of SPRISK

5.2.1 Weight Assignment

To examine the effectiveness of our self-learning weight
assignment method, we randomly selected 5,000 apps from
malware and normal app dataset, respectively. Then, we
converted the selected dataset into a matrix (see Section 4).
However, this way may induce unreasonable computation
and storage costs (e.g., 10,000 apps need to construct a
10;000� 10;000 matrix), which is unpractical. To solve this
problem, we leveraged a divide-and-conquer method to save
memory. In detail, the dataset was divided into 10 groups,
each group has 1,000 apps. Because all the weight coefficient
vectors from different groups have the same influence, we
could calculate the average of them to achieve the final result.

As shown in Fig. 5, the two most important factors are
Source (U1) and Sink (U2). We compared the sensitivity dis-
tribution of these two factors by selecting 1,000 apps with
high and low risk, respectively. In these high (low) risk
apps, there are 2,346 (1,621) sinks and 80 percent (82 per-
cent) of them have the sensitivity high (low). Compared
with sinks, there are 1,865 (1,041) sources and only 51 per-
cent (46 percent) of them have the sensitivity high (low). On
one hand, the sensitivity distribution of Source is more bal-
anced than that of Sink, and we cannot decide the privacy
risk according to the sensitivity of Source. On the other

hand, the sensitivity of Sink has a strong relationship with
the privacy risk of an app. In other words, if an app has
many sinks that have the sensitivity of high, it would have
a high possibility of privacy leakage, which means that the
destination of the sensitive data flow has a great influence
on the privacy risk of an app.

For the privacy risk of permissions, many researchers
have suggested that developers should follow the least-
privilege principle and request only necessary permissions.
In our approach, permission is also an impactful factor,
which has the higher weight than the other four factors (U3,
U4, U5, and U7). As illustrated in Section 3.1.5, different per-
missions have distinct influence on the privacy risk.

5.2.2 Accuracy

Note that mobile users have distinct security preference,
there is no unified criterion for privacy risk assessment of
apps. Therefore, evaluating accuracy is a challenging task
since manually running all apps and examining each user’s
expected appropriate behaviors are not feasible. In this
experiment, we opt for an approximation of accuracy for
SPRISK. We want to evaluate how well SPRISK is able to
assigning high scores to malware apps and low scores to
normal apps. To this end, we randomly selected 5,000 apps
from malware and normal app dataset, respectively. Fig. 6
summarizes the characteristics of the risk distribution.

We can find that most apps in the malware dataset
(SPRisk-M) have higher risk than that in the normal app
dataset (SPRisk-N). Especially, in the malware dataset, the
percentages of apps that have risk scores higher than 60
are 73.72 percent. For all apps been labeled as very high,
90.79 percent come from the malware dataset, which illus-
trates that our approach can obtain equivalent results.
Moreover, there are 9.96 percent apps in the malware data-
set with risk scores lower than 40. This is because that some

TABLE 3
Summary of Malware Dataset

Drebin DroidAnalytics Malgenomeproject

Number 5,560 2,258 1,260

Total 7,111

TABLE 4
Summary of Normal App Dataset

Official Unofficial

Google Play Store Anzhi Anruan Nduoa Gfan

Number 172,445 5,000 5,000 5,000 5,000

Total 192,445

Fig. 5. Weight distribution of the factor set.

Fig. 6. The cumulative privacy risk distribution of malware and normal
apps.

CHEN ETAL.: SEMANTICS-AWARE PRIVACY RISK ASSESSMENT USING SELF-LEARNING WEIGHTASSIGNMENT FOR MOBILE APPS 23

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

malware samples do not aim at stealing users’ private data.
Therefore, the privacy risk scores of them are low. On the
other hand, 12.65 percent apps have risk scores higher than
60 in the normal app dataset. In other words, privacy risk is
a ubiquitous problem in most apps.

We compared the accuracy of SPRISK with Andro-
guard [9], which is a popular static analysis tool. Andro-
guard also provides a toolkit to evaluate the risk of an app,
and the evaluation result is represented by a number
between 0 and 100. Fig. 6 also shows the privacy risk distri-
bution for evaluating malware (Androguard-M) and normal
(Androguard-N) apps by Androguard. From our experi-
ments, we find that more than 56 percent (2,815) of malware
apps are labeled with risk scores under 60 and less than
38 percent (1,956) of normal apps are scored under 20. The
results indicate that Androguard cannot provide appropri-
ate evaluation for many malware and normal apps. More-
over, compared with SPRISK, we find that the gap between
malware and normal apps in Androguard is little, which
means that Androguard cannot differentiate the semantic
of sensitive behaviors. Through analyzing the source code
of Androguard, we find that its risk evaluation model is
too simple. It only chooses partial factors (Permissions,
DexClassLoader, and Binary Files), and it does not consider
the weight distribution of each factor.

5.2.3 Case Studies

In this section, we constructed several cases to evaluate the
rationality of SPRISK. In particular, we selected two apps
mentioned in Section 2 (i.e., GPSSMSSpy and Wifilocating),
and performed the privacy risk assessment. Fig. 7 illustrates
the results in the form of hexagon. Each vertex of the hexa-
gon denotes the risk score of a factor, which is calculated by
the Equation (3) in Section 4.1.

In the first app, locations are sent out of the device and the
data are accessed automatically, which means that the pro-
cess is transparent to the user. Therefore, the probability of
leakage is relatively high and this stealthy manner should be
allocated with high risk. Fig. 7a shows the evaluation result
of this app. The final risk level is very high, and the risk
score is 94.9694. The risk assessment of the second app is
more complicated than the first one, since there are multiple
sensitive data flows with different sensitivities. Both get-

SubscriberId() and getConnectionInfo() have less
severity than getLatitude() and getLongitude(). For
the sensitivity of trigger condition, onResume() increases
the privacy risk, whileonClick() is the opposite. As shown
in Fig. 7b, the final risk level is normal, and the risk score is
55.5482, which is better than that of the first one. Fig. 7c
shows the difference between them. From this figure, we
can easily compare the privacy risk diversity of them. In

addition, we also find that the bigger hexagon area indicates
the higher privacy risk, which is quite intuitive to compare
the privacy risks of different apps.

Moreover, we also conduct a user study by recruit 50
participants in our school, and randomly assigned them
into two parts. In the first part, participants were shown the
permission screen that traditional Market uses. In the other
part, participants were shown our qualitative and quantita-
tive result by our approach. For each part, 50 apps were
selected, including 20 malicious apps that steal user’s sensi-
tive data, 20 normal apps that access user’s sensitive apps
for legal functions, and 10 apps do not access user’s data.
Participants were asked whether they could understand the
privacy risk of apps easily, and whether they could select
the appropriate apps with the lowest risk. In this experi-
ment, we mainly focused on the usability of SPRisk. This is
measured by counting the number of participants who
make the right decisions when select appropriate apps. At
last, a total of 1,568 responses were submitted. Generally
speaking, more people in the second part mentioned pri-
vacy risk concerns when they noticed the evaluation result.
When we asked people in both parts to divide high, normal
and low privacy risk apps, people in the second part also
demonstrated a higher accuracy compared to their counter-
parts. This finding suggests that our approach can provide
more privacy risk evaluation information and help users
make decision appropriately.

5.3 Measurement Results

5.3.1 Privacy Risk Distribution

In this analysis, we focused on the privacy risk distribution
of Google Play Store by evaluating 172,445 samples, as illus-
trated in Fig. 8. Specifically, the ratio of very low (51,805),
low (35,868) and average (62,080) samples in the dataset is
86.84 percent, which indicates that Google Play Store indeed
makes effort to mitigate the high risk apps. For example,
Google Play Store operates Bouncer [26] to scan an app for
known malicious code, which also executes the app within
a simulated environment to detect hidden malicious beh-
avior. However, the ratio of very high (7,897) and high

(14,795) apps is 13.16 percent, due to the centralized role of
Google Play Store, those apps can still affect a tremendous
number of devices. In fact, more than 9,000 such apps have
already been installed over 500,000 times. Also, there are a
few extremely popular ones, such as AngryBird, with the
install count reaching 100 million or even more.

Although high privacy risk may not indicate that an
app is malicious, we still need to pay more attention. To ver-
ify the independence of privacy risk, we scanned these

Fig. 7. The sensitivity distributions of two cases and their comparison.

Fig. 8. The privacy risk distribution of 172,445 normal apps in Google
Play Store.

24 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

very high samples (7,897) in the normal app dataset by
VirusTotal [27]. For each sample, we recorded the test
results of different scanners. At last, only 136 apps were
labeled as malware by at least two scanners.

Furthermore, we randomly selected and manually ana-
lyzed 100 apps that are not detected by VirusTotal. The anal-
ysis result shows that 21 of them are highly suspicious. On
one hand, 13 apps send sensitive data out of the device (sink:
sendTextMessage()) without any notice or warning, e.g.,
device information (source: getDeviceId()) and users’
locations (source: getLatitude). Most seriously, these data
are transmitted in plain text, which can be easily hijacked by
attackers. On the other hand, 8 apps can access many high
risk resources, including contacts (source: content://

contacts/data/phones) and SMS (source: content://
sms/inbox). Although these high risk data are not sent out
of the device (sink: log.d()), they are accessed automati-
cally (state_change: onReceive()) and the process is trans-
parent to users. Therefore, these stealthy manners should be
allocated with high risk. In our experiment, SPRISK label
these apps as very high risk level, which illustrates that our
approach can effectively disclose the potential privacy risk
of normal apps and obtain equivalent results.

5.3.2 Official versus Unofficial

We further present the privacy risk diversity in official (i.e.,
Google Play Store) and unofficial (i.e., Anruan, Anzhi, Gfan
and Nduoa) markets. We randomly selected 20,000 apps
from Google Play Store and 5,000 apps from each unofficial
market, respectively. The assessment results are shown in
Fig. 9a. It is evident that the average privacy risk in unoffi-
cial markets is higher than that in official market. Among
those apps labeled as very high (4,206), over 65.12 percent
of them are from the unofficial markets. In addition, the
number of very high and high apps (4,893) in these unoffi-
cial markets is almost twice of that (2,391) in the official mar-
kets. This observation points out the fact that unofficial
markets are lack of sufficient censorship, compared with
Google Play Store. More seriously, users can download

apps from any websites and copy the apk files to device,
which further attracts the attention of malware authors.

Another interesting work is to rank these unofficial mar-
kets. Table 5 depicts our discovery. One can readily observe
that none of the four unofficial markets can guarantee that
their ratios of very low and low apps exceed 50 percent. In
particular, the privacy risk in Gfan is the most serious:
among 5,000 apps, 842 of them are evaluated as very high

(16.84 percent) and 758 are high (15.16 percent). This can be
attributed to the fact that this market exclusively focuses on
releasing Android games. Many games do not need sensi-
tive data to realize their functions, but they still attempt to
collect users’ data for other purposes. From this experiment,
we believe that there is an urgent requirement to deploy a
rigorous vetting mechanism in unofficial markets.

5.3.3 Discrepancy Among Different Categories

As mentioned before, the app market, which mainly releases
game apps, has a high privacy risk score. To further study this
issue, we investigated the privacy risk discrepancy among
different app categories. Without loss of generality, we
focused on three common categories: 1) Games, 2) Tools, and
3) Business. For each category, we collected 2,000 samples
from the normal app dataset and evaluated them by SPRISK.
Fig. 9b shows the evaluation result. Unsurprisingly, for the
category “Games”, 556 (27.8 percent) apps’ privacy risk levels
are evaluated as very high, and its ratio is higher than the oth-
ers’. In addition, the privacy risk distribution of category
“Business” is the best, and there are 1,451 (72.55 percent) apps
with the risk level that is not higher than average. This is
because that apps in category “Business” have few sensitive
functions than that in “Games” and “Tools”, which leads to a
lower privacy risk. These results validate the effectiveness of
our semantics-aware privacy risk assessment framework, and
illustrate that SPRISK can capture the tiny discrepancy of
different app types.

Finally, we evaluated the privacy risk of apps which
belong to the same category and have similar utilities. For
convenience, we handpicked ten Android games, including
PewDiePie, Mortal Kombat, Doodle Jump, Vainglory, Mine-
craft, War, Hearthstone, LEGO Marvel, Prune, and Angry
Bird 2. All of these games are very famous globally, and
have more than 100 million players. To satisfy the individ-
ual requirement of different users, these apps always access
some sensitive data. Although these behaviors may be nec-
essary for the service, they still increase the privacy risk. We
evaluated these samples through SPRISK and sorted them by
their risk scores, as shown in Fig. 10. We could find that
though each game has a different score, none of these games

Fig. 9. Measurement results of SPRISK.

TABLE 5
Privacy Risk Distributions of Four Unofficial Markets

Markets Risk level Average
scorev1(very low) v2(low) v3(average) v4(high) v5(very high)

Anzhi 1,446 891 1,717 382 564 33.03
Anruan 1,603 757 1,497 528 615 33.88
Nduoa 1,211 712 1,873 486 718 35.45
Gfan 1,162 643 1,595 758 842 38.14

Total 5,422 3,003 6,682 2,154 2,739 35.13

CHEN ETAL.: SEMANTICS-AWARE PRIVACY RISK ASSESSMENT USING SELF-LEARNING WEIGHTASSIGNMENT FOR MOBILE APPS 25

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

is labeled as very low and all the scores are higher than 30.
Especially, Doodle Jump achieves the highest risk score
71.53. Therefore, on the basis of satisfying service quality,
we suggest users choose the app with the lower risk score,
which can reduce the privacy risk.

5.4 Runtime Performance

To illustrate the runtime performance of SPRISK, we selected
5,000 samples from normal apps dataset. Table 6 shows
the mean and median time of each step and the overall
time for privacy risk assessment. SPRISK took an average of
152.11 seconds and a median of 64.9 seconds to perform the
evaluation of an app. Fig. 11a shows the cumulative distribu-
tion of analysis time. For approximately 85 percent of apps,
SPRISK finished the assessment within 5 minutes. As a static
analysis tool, such an evaluation time is acceptable to most
servers that have normal computing power.

To analyze deeply, we also evaluated the time spent with
the increasing sizes of APK files. From the Fig. 11b, we can
find that the analysis time has no relation to the APK size.
This occurs because the number of sensitive data transmis-
sion is independent with the scale of dexcode. In other
words, a bigger APK size does not indicate more complex
code logic, it may contain some big assistant files which are
unrelated to privacy-risk assessment.

Moreover, we also measured the breakdown of SPRISK

analysis time. In fact, the breakdown shows that around 85
to 92 percent of the analysis time is spent on factor extrac-
tion. We are planning to adopt a multi-threaded implemen-
tation to accelerate this phase. Meanwhile, we also discover
that some data transmission paths are presented similarly
and exclude these unnecessary paths could be a direction
for optimization as well.

6 DISCUSSION AND LIMITATIONS

We have demonstrated that SPRISK can automatically evalu-
ate the privacy risk of Android apps in semantic level. Obvi-
ously, except the factors mentioned above, there also exist
other factors which can be extracted by static code analysis,
such as dynamic code, binary files, etc. Fortunately, SPRISK

is designed as a flexible solution, and it is quite easy to
extend our current approach to consider more factors. To
add a new factor, we only need to recalculate the weight
distribution of the new Factor Set, and the whole evaluation
model does not need any change. Accordingly, it provides a
scalable approach to evaluate the privacy risk of an app,
and forces future developers to design trade-offs properly
to protect users’ privacy.

While we have demonstrated promising results, we do
not claim that our system is mature and has addressed all
the problems. SPRISK chooses FlowDroid to perform static
taint analysis, which turns out to be feasible and can have a
good coverage of sensitive data transmission path. How-
ever, in our testing, we found that the overhead of Flow-
Droid is costly. Although the cost is acceptable for the
server, it cannot be deployed on the device directly. To alle-
viate such issues, we may need to leverage more light-
weight static taint analysis techniques in the future for eval-
uating downloaded apps directly on the device.

Furthermore, due to the code obfuscation issue of static
analysis approach, there always exists the possibility that
attackers find ways to evade the defender’s detection by
improving their technique. We expect the same to occur
in our approach. To deal with this issue, we expect to
combine SPRISK with dynamic analysis. With the help of
automatic trigger and symbol execution techniques, the
privacy risk of an intellectual app can be evaluated at
runtime. Eventually, it will allow SPRISK to evaluate new
variants of apps.

7 RELATED WORK

7.1 Analysis of Sensitive Data Flows

Extracting sensitive data flows is a vivid research area in the
past few years. Existing schemes can be divided into two
branches. The first branch focuses on identifying more pre-
cise sensitive data flows [25], [28], [29], [30], [31]. FlowDroid
[25] performed context, field, object, and flow-sensitive taint
analysis for Android apps. IccTA [29] sought to identify
sensitive inter-component and inter-application information
flows. The second branch considers more sensitive data [11],
[32], [33]. For example, SuSi [11] leveraged a supervised
learning approach to detect more sensitive APIs in Android
platform. SUPOR [32] and UIPicker [33] automatically
examined the UIs to identify sensitive user inputs that
involve privacy. Different from these approaches, SPRISK

well considers the risk diversities of different sensitive data
flows, which can be deployed as a supplement, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TDSC.2018.2871682,
of the existing static and dynamic analysis approaches.

Fig. 10. The risk score rank of several Android games.

TABLE 6
Analysis Time for Privacy Risk Assessment

Step Factor
Extraction

Matrix
Generation

Privacy
Risk

Assessment

Overall

Mean 138.14s 11.50s 2.47s 152.11s
Median 56.38s 7.17s 1.35s 64.9s

Fig. 11. The runtime performance of SPRISK.

26 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TDSC.2018.2871682
http://doi.ieeecomputersociety.org/10.1109/TDSC.2018.2871682

7.2 Malicious App Detection

There are lots of works focus on malicious app detection [1],
[2], [3], [4], [6], [34], [35]. To reduce manual effort, the best
technique for most situations is automatic analysis. For
example, TaintDroid [1] performed dynamic taint tracking
of data, and tracked the sensitive data by inserting profiling
code into the app. DREBIN [3] took a hybrid approach and
considered both Android permissions and sensitive APIs as
malware features. CHEX [36] performed static information-
flow analysis to identify component hijacking vulnerabil-
ities in Android app. DroidAPIMiner [37] extracted mal-
ware features at the API level and provided light-weight
classifiers to defend against malware installations. How-
ever, the goal of these studies is to detect malware. As a
result, neither of these solutions actually attempt to evaluate
the privacy risk level of common apps, including normal
and malicious apps. Moreover, privacy risk is an indepen-
dent threat and it is not appropriate to evaluate such an app
by simply utilizing existing malware detection methods.

Some researchers also took users’ intention into consider-
ation [38], [39]. For example, AUTOREB [38] explores the
user review information, and utilizes the review semantics
to predict the risky behaviors in Android apps. AppIntent
[39] studied a method to separate user-intended Android
data transmission from unintended ones. It proposes a sym-
bolic execution approach for Android GUI applications to
extract event inputs and data inputs. Inspired by these stud-
ies, SPRISK aims at helping end users to understand the pri-
vacy risk of Android apps, and therefore provides more
fine-grained evaluation result.

7.3 Privacy Risk Assessment

There also exists some risk assessment schemes for Android
apps [7], [8], [40], [41], [42]. For example, RiskMon [8] com-
bined users’ coarse expectations and runtime behaviors of
apps to evaluate the risk of an app. It required users to pro-
vide their selection of trusted apps, thus the approach can
satisfy the diverse preferences of different users. However, it
analyzed apps in syntax level but not in semantic level. Peng
et al. [7] proposed a permission-based risk assessment
approach. They argued that a binary risk signal has signifi-
cant limitations, which is consistent with our opinion. How-
ever, it only considered permissions to exploit risk scoring
functions, which is superficial and needsmore in-depth anal-
ysis. AppAudit [41] relied on static and dynamic analysis to
provide real-time app auditing. WHYPER [42] leveraged
Natural Language Processing techniques to automatically
assess the risk by revealing the discrepancy between app
description and the permission usage. Moreover, both of
these solutions took no account of the actual influences of
various factors. Our approach can address all of these prob-
lems in privacy risk assessment of Android apps.

Most related to our work is proposed by Lin et al. [40],
which also assign grades to Android apps by using a pri-
vacy model they built. The privacy model measures the gap
between people’s expectations of an app’s behavior and the
app’s actual behavior. Unlike them that only uses third-
library as the indicator of what sensitive data that apps use
and how that data is used, which could easily lose other
potential channels, SPRISK utilize static taint analysis to
extract sensitive data transmission flow, and ensures a good

coverage of source code. Certainly, their techniques in anal-
ysis third-library could complement our factor set to further
improve our approach.

8 CONCLUSIONS

In this paper, we presented SPRISK, a privacy risk assess-
ment framework. SPRISK considers multiple factors not
only in syntax level but also in semantic level. To deter-
mine the actual influence of various factors, we introduced
a self-learning weight assignment method. We imple-
mented a prototype system, which provides the qualitative
and quantitative results that can intuitively help users
make decisions before installing the target app. Experi-
mental results clearly demonstrated that SPRISK is effective
and feasible. With the help of SPRISK, an analyst can fur-
ther reveal various helpful findings to mitigate privacy
leakage in the mobile ecosystem, such as the diversity
between apps with different popularities and the inte-
grated privacy risk of a mobile device.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grant U1836202, Grant
61772383, Grant 61572380, Grant 61702379, the Joint
Foundation of Ministry of Education under Grant
6141A02033341, the Foundation of Science, Technology and
Innovation Commission of Shenzhen Municipality under
Grant JCYJ20170303170108208, and the Foundation of
Collaborative nnovation Center of Geospatial Technology.

REFERENCES

[1] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. D. McDaniel,
and A. Sheth, “TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” in Proc. 9th
USENIX Symp. Operating Syst. Des. Implementation, 2010, pp. 393–
407.

[2] A. Kharraz, S. Arshad, C. Mulliner, W. K. Robertson, and E. Kirda,
“UNVEIL: A large-scale, automated approach to detecting ran-
somware,” in Proc. 25th USENIX Secur. Symp., 2016, pp. 757–772.

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Efficient and explainable detection of Android Mal-
ware in your pocket,” in Proc. 21th Netw. Distrib. Syst. Secur.
Symp., 2014, pp. 1–15.

[4] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware
Android malware classification using weighted contextual API
dependency graphs,” in Proc. 21th ACM Conf. Comput. Commun.
Secur., 2014, pp. 1105–1116.

[5] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative
Android markets,” in Proc. 29th Netw. Distrib. Syst. Secur. Symp.,
2012, pp. 1–15.

[6] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in Proc. 23th
ACM Conf. Comput. Commun. Secur., 2016, pp. 356–367.

[7] H. Peng, C. S. Gates, B. P. Sarma, N. Li, Y. Qi, R. Potharaju,
C. Nita-Rotaru, and I. Molloy, “Using probabilistic generative
models for ranking risks of Android apps,” in Proc. 19th ACM
Conf. Comput. Commun. Secur., 2012, pp. 241–252.

[8] Y. Jing, G. Ahn, Z. Zhao, and H. Hu, “Towards automated risk
assessment and mitigation of mobile applications,” IEEE Trans.
Depend. Secure Comput., vol. 12, no. 5, pp. 571–584, Sep./Oct. 2015.

[9] Androguard. [Online]. Available: https://code.google.com/p/
androguard/, Accessed on: 2017

[10] Y. Zhou and X. Jiang, “Dissecting android malware: Characteriza-
tion and evolution,” in Proc. 33rd IEEE Symp. Secur. Privacy, 2012,
pp. 95–109.

CHEN ETAL.: SEMANTICS-AWARE PRIVACY RISK ASSESSMENT USING SELF-LEARNING WEIGHTASSIGNMENT FOR MOBILE APPS 27

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

https://code.google.com/p/androguard/
https://code.google.com/p/androguard/

[11] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning
approach for classifying and categorizing android sources
and sinks,” in Proc. 21th Netw. Distrib. Syst. Secur. Symp., 2014,
pp. 1–15.

[12] DCCI Data Center of China Internet. [Online]. Available: http://
www.dcci.com.cn/media/download/5097b97e067b58b50428774
fefb45c35eb89.pdf, Accessed on: 2016

[13] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. A. Wagner,
and K. Beznosov, “Android permissions remystified: A field
study on contextual integrity,” in Proc. 24th USENIX Secur. Symp.,
2015, pp. 499–514.

[14] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall, “Brahmastra: Driving apps to test the
security of third-party components,” in Proc. 23th USENIX Secur.
Symp., 2014, pp. 1021–1036.

[15] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter,
“Free for all! Assessing user data exposure to advertising libraries
on android,” in Proc. 23th Netw. Distrib. Syst. Secur. Symp., 2016,
pp. 1–15.

[16] S. Son, D. Kim, and V. Shmatikov, “What mobile ads know about
mobile users,” in Proc. 23th Netw. Distrib. Syst. Secur. Symp., 2016,
pp. 1–15.

[17] W. Meng, R. Ding, S. P. Chung, S. Han, and W. Lee, “The price of
free: Privacy leakage in personalized mobile in-apps ads,” in Proc.
23th Netw. Distrib. Syst. Secur. Symp., 2016, pp. 1–15.

[18] S. Nath, “MAdScope: Characterizing mobile in-app targeted ads,”
in Proc. 13th Annu. Int. Conf.Mobile Syst. Appl. Serv., 2015, pp. 59–73.

[19] Scrapy. [Online]. Available: http://scrapy.org, Accessed on: 2017
[20] R. Lomax and D. Hahs-Vaughn, Statistical Concepts: A Second

Course. Evanston, IL, USA: Routledge, 2012.
[21] Z. Pawlak, “Rough sets,” Int. J. Comput. Inf. Sci., vol. 11, no. 5,

pp. 341–356, 1982.
[22] M. Zheng, M. Sun, and J. C. S. Lui, “Droid analytics: A signature

based analytic system to collect, extract, analyze and associate
Android malware,” in Proc. 12th IEEE Int. Conf. Trust Secur. Pri-
vacy Comput. Commun., 2013, pp. 163–171.

[23] Goolge Play Store. [Online]. Available: http://play.google.com/
store?hl=en/, Accessed on: 2017

[24] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of
Google Play,” in Proc. ACM Int. Conf. Meas. Model. Comput. Syst.,
2014, pp. 221–233.

[25] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. L. Traon, D. Octeau, and P. D. McDaniel, “FlowDroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps,” in Proc. 35th ACM SIGPLAN Conf.
Program. Language Des. Implementation, 2014, pp. 259–269.

[26] Google play: Android’s bouncer can be pwned. [Online]. Available:
http://www.techrepublic.com/blog/it-security/-google-play-
androids-bouncer-can-be-pwned/, Accessed on: 2017

[27] VirusTotal. [Online]. Available: https://www.virustotal.com/,
Accessed on: 2017

[28] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information-flow analysis of Android applications
in DroidSafe,” in Proc. 22th Netw. Distrib. Syst. Secur. Symp., 2015,
pp. 1–16.

[29] L. Li et al., “I know what leaked in your pocket: Uncovering pri-
vacy leaks on Android apps with static taint analysis,” 2014,
arXiv:1404.7431.

[30] V. M. Afonso, P. L. de Geus, A. Bianchi, Y. Fratantonio, C. Kruegel,
G. Vigna, A. Doup�e, and M. Polino, “Going native: Using a large-
scale analysis of android apps to create a practical native-code
sandboxing policy,” in Proc. 23th Netw. Distrib. Syst. Secur. Symp.,
2016, pp. 1–15.

[31] M. Sun, T. Wei, and J. C. S. Lui, “TaintART: A practical multi-level
information-flow tracking system for android runtime,” in Proc.
23th ACM Conf. Comput. Commun. Secur., 2016, pp. 331–342.

[32] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,
“SUPOR: Precise and scalable sensitive user input detection
for Android apps,” in Proc. 24th USENIX Secur. Symp., 2015,
pp. 977–992.

[33] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X.Wang, “UIPicker:
User-input privacy identification in mobile applications,” in Proc.
24th USENIX Secur. Symp., 2015, pp. 993–1008.

[34] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen,
“AutoCog: Measuring the description-to-permission fidelity in
Android applications,” in Proc. 21th ACM Conf. Comput. Commun.
Secur., 2014, pp. 1354–1365.

[35] J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G. Ahn,
“Uncovering the face of android ransomware: Characterization
and real-time detection,” IEEE Trans. Inf. Forensic Secur., vol. 13,
no. 5, pp. 1286–1300, May 2018.

[36] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically vetting
Android apps for component hijacking vulnerabilities,” in Proc.
19th ACM Conf. Comput. Commun. Secur., 2012, pp. 229–240.

[37] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level
features for robust malware detection in Android,” in Proc. 9th
Int. ICST Conf. Secur. Privacy Commun. Netw., 2013, pp. 86–103.

[38] D. Kong, L. Cen, and H. Jin, “AUTOREB: Automatically under-
standing the review-to-behavior fidelity in Android applications,”
in Proc. 22th ACM Conf. Comput. Commun. Secur., 2015, pp. 530–
541.

[39] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“AppIntent: Analyzing sensitive data transmission in Android for
privacy leakage detection,” in Proc. 20th ACM Conf. Comput. Com-
mun. Secur., 2013, pp. 1043–1054.

[40] J. Lin, N. M. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang,
“Expectation and purpose: Understanding users’ mental models
of mobile app privacy through crowdsourcing,” in Proc. ACM
Conf. Ubiquitous Comput., 2012, pp. 501–510.

[41] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective real-time
Android application auditing,” in Proc. 36th IEEE Symp. Secur. Pri-
vacy, 2015, pp. 899–914.

[42] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER:
Towards automating risk assessment of mobile applications,” in
Proce. 22th USENIX Secur. Symp., 2013, pp. 527–542.

Jing Chen is a professor with the School of
Cyber Science and Engineering, Wuhan Univer-
sity. He has published more than 90 research
papers in many international journals and confer-
ences, such as the IEEE Transactions on Parallel
and Distributed Systems, the IEEE Transactions
on Mobile Computing, the IEEE Transactions on
Computers, INFOCOM, SECON, TrustCom. His
research interests include the areas of network
security and cloud security.

Chiheng Wang received the MS degree in com-
puter science from Wuhan University, Wuhan,
China, in 2015. He is working toward the PhD
degree at Wuhan University. His research inter-
ests include network security, mobile computing,
and privacy protection.

Kun He received the PhD degree in computer
science from Wuhan University. His research
interests include cryptography, network security,
mobile computing, and cloud computing. He has
published research papers in the IEEE Transac-
tions on Parallel and Distributed System, the
International Journal of Communication Systems,
the Security and Communication Networks, and
IEEE TRUSTCOM.

28 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

http://www.dcci.com.cn/media/download/5097b97e067b58b50428774fefb45c35eb89.pdf
http://www.dcci.com.cn/media/download/5097b97e067b58b50428774fefb45c35eb89.pdf
http://www.dcci.com.cn/media/download/5097b97e067b58b50428774fefb45c35eb89.pdf
http://scrapy.org
http://play.google.com/store?hl=en/
http://play.google.com/store?hl=en/
http://www.techrepublic.com/blog/it-security/-google-play-androids-bouncer-can-be-pwned/
http://www.techrepublic.com/blog/it-security/-google-play-androids-bouncer-can-be-pwned/
https://www.virustotal.com/

Ziming Zhao received the PhD degree in com-
puter science from Arizona State University,
Tempe, Arizona, in 2014. He is an assistant pro-
fessor with the Golisano College of Computing
and Information Sciences, Rochester Institute of
Technology. He directs the Cyberspace Security
and Forensics Lab (CactiLab). His research out-
comes have appreared in the IEEE Symposium
on Security and Privacy, USENIX Security, ACM
CCS, NDSS, ACSAC, the ACM Transactions
on Information and System Security, the IEEE

Transactions on Information Forensics and Security, the IEEE Transac-
tions on Dependable and Secure Computing, etc. He is a member of
the IEEE.

Min Chen is a full professor with the School of
Computer Science and Technology, Huazhong
University of Science and Technology (HUST).
He was an assistant professor with the School of
Computer Science and Engineering, Seoul
National University (SNU). His research focuses
on cyber physical systems, mobile cloud comput-
ing, SDN, healthcare big data, medica cloud pri-
vacy and security, body area networks, emotion
communications and robotics, etc. He is a senior
member of the IEEE since 2009.

Ruiying Du received the BS, MS, and PhD
degrees in computer science fromWuhan Univer-
sity, Wuhan, China, in 1987, 1994, and 2008,
respectively. She is a professor with the School of
Cyber Science and Engineering, Wuhan Univer-
sity. Her research interests include network secu-
rity, wireless network, cloud computing, and
mobile computing. She has published more than
80 research papers in many international journals
and conferences, such as the IEEE Transactions
on Parallel and Distributed Systems, INFOCOM,
SECON, TrustCom, and NSS.

Gail-Joon Ahn received the PhD degree in infor-
mation technology from George Mason University,
Fairfax, Virginia, in 2000. He is a professor with the
School of Computing, Informatics, and Decision
Systems Engineering, Ira A. Fulton Schools of
Engineering and the director of Security Engineer-
ing for Future Computing Laboratory, Arizona
State University. His research has been supported
by the US National Science Foundation, National
Security Agency, US Department of Defense, and
US Department of Energy. He is a senior member
of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CHEN ETAL.: SEMANTICS-AWARE PRIVACY RISK ASSESSMENT USING SELF-LEARNING WEIGHTASSIGNMENT FOR MOBILE APPS 29

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:03:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

