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Abstract— Dynamic Searchable Symmetric Encryption (DSSE)
enables users to search on the encrypted database stored on a
semi-trusted server while keeping the search and update infor-
mation under acceptable leakage. However, most existing DSSE
schemes are not efficient enough in practice due to the complex
structures and cryptographic primitives. Moreover, the storage
cost on the client side grows linearly with the number of keywords
in the database, which induces unaffordable storage cost when
the size of keyword set is large. In this article, we focus on
secure dynamic searchable symmetric encryption with constant
client storage cost. Our framework is boosted by fish-bone chain,
a novel two-level structure which consists of Logical Keyword
Index Chain (LoKIC) and Document Index Chain (DIC). To
instantiate the proposed framework, we propose a forward secure
DSSE scheme, called CLOSE-F, and a forward and backward
secure DSSE scheme, called CLOSE-FB. Experiments showed
that the computation cost of CLOSE-F and CLOSE-FB are as
efficient as the state-of-the-art solutions, while the storage costs
on the client side are constant in both CLOSE-F and CLOSE-FB,
which are much smaller than existing schemes.

Index Terms— Searchable symmetric encryption, forward
security, backward security.

I. INTRODUCTION

AS CLOUD services are widely used by individuals and
enterprises to store their important data, users prefer to

encrypt sensitive data before storing them on the cloud to pro-
tect their privacy. Though encryption provides a strong security
guarantee, it also prevents cloud servers from performing use-
ful operations at the same time, such as search and calculation.

Manuscript received October 28, 2019; revised June 16, 2020 and
August 20, 2020; accepted October 11, 2020. Date of publication October 23,
2020; date of current version December 11, 2020. This work was supported
in part by the National Natural Science Foundation of China under Grant
61702379, Grant U1836202, and Grant 61772383; in part by the China
Postdoctoral Science Foundation under Grant 2019T120685; and in part by the
Joint Fund of Ministry of Education of China for Equipment Pre-Research
under Grant 6141A02033341. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Lejla Batina.
(Corresponding author: Jing Chen.)

Kun He and Qinxi Zhou are with the Key Laboratory of Aerospace
Information Security and Trusted Computing, Ministry of Education, School
of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China.

Jing Chen is with the School of Cyber Science and Engineering, Wuhan
University, Wuhan 430072, China, and also with the Shenzhen Institute,
Wuhan University, Wuhan 430072, China (e-mail: chenjing@whu.edu.cn).

Ruiying Du is with the Key Laboratory of Aerospace Information Security
and Trusted Computing, Ministry of Education, School of Cyber Science and
Engineering, Wuhan University, Wuhan 430072, China, and also with the
Collaborative Innovation Center of Geospatial Technology, Wuhan University,
Wuhan 430072, China.

Yang Xiang is with the School of Software and Electrical Engineering,
Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

Digital Object Identifier 10.1109/TIFS.2020.3033412

Symmetric Searchable Encryption (SSE) was then introduced
by the research community to realize keyword search in the
ciphertext, which is one of the most basic data operations [1].

Early research focused on the static case, in which a user
outsources his/her private documents to a semi-trusted server,
and later issues search tokens to the server to perform keyword
search without revealing sensitive information [2]–[6]. How-
ever, static SSE does not support many document operations,
i.e., creation, update, and deletion, which are required in
many practical applications. The researchers then draw their
attention to Dynamic SSE (DSSE) [7]–[11].

A DSSE scheme includes a structure and the operations
over it for storing, searching, and updating keyword/document
pairs [12]. Although a lot of works are devoted to the security
and efficiency of DSSE, existing schemes still face significant
challenges. 1) Many solutions employed ingenious structures
(e.g., inverted index), whose operations have good asymptotic
performance in theory. However, the performance is poor in
practice because of the heavy cryptographic operations [9],
[10] or constrained update problems [11]. 2) The state stored
on the client for searching and updating those structures grows
linearly with the number of keywords which may introduce
a heavy burden on the client [13], [14]. 3) Those (even
encrypted) state on the client side may leak some information,
such as the keywords and the number of keywords. In short,
there is still a lack of an efficient structure with practical
operations over it for search and update processes in DSSE that
can be securely stored without leaking additional information.

In this article, we aim to design a framework which imple-
ments Constant cLient stOrage cost for dynamic Searchable
symmetric Encryption, named CLOSE. Instead of the tradi-
tional structure, such as inverted index, our construction is
boosted by a novel two-level structure, named fish-bone chain,
which binds all keywords to a single state. The first level
is a logical structure of search tokens for a keyword, called
Logical Keyword Index Chain (LoKIC). With this structure,
we can reduce the storage cost on the client side, which solves
the second and third challenges. To solve the first challenge,
we designed another structure at the second level, called
Document Index Chain (DIC) for optimizing the computation
cost and reducing the rebuilding overhead.

Recently, file-injection attacks [15] have shown that many
DSSE schemes are not as secure as expected if an adversary
has some knowledge about the added documents. To defend
such attacks, the basic security requirement for a DSSE
scheme is forward security, which means that the server
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TABLE I

COMPARISON OF SEVERAL SSE SCHEMES

cannot learn whether the newly added documents match the
previous search tokens (until new related search tokens are
generated) [16]. To this end, we propose a forward secure
DSSE scheme based on a carefully instantiated fish-bone chain
structure, called CLOSE-F.

Another significant security property is backward security,
which indicates that the server is not able to figure out
whether the deleted documents contain the keyword that is
being searched [17]. Although backward security was not for-
mally defined until [11], researchers have considered it as an
important direction [11], [22]. To achieve backward security,
we modify the fish-bone chain in CLOSE-F and propose a
forward and backward secure scheme, called CLOSE-FB.

Our main contributions are summarized as follows.

• To the best of our knowledge, CLOSE is the first effi-
cient and secure DSSE framework with constant client
storage cost. Furthermore, the computation complexity
of CLOSE-F and CLOSE-FB in the search and update
processes are nearly optimal in both theory and practice.
The comparison of CLOSE-F and CLOSE-FB with pre-
vious ones is shown in Table I.

• We design a novel two-level structure, called fish-bone
chain, which comprises of the proposed Logical Keyword
Index Chain (LoKIC) and Document Index Chain (DIC).
With this structure, users can generate forward (and
backward) secure search tokens without maintaining a
state list for every keyword.

• We prove that CLOSE-F and CLOSE-FB are secure
against semi-trusted adversaries. We also implement
CLOSE-F and CLOSE-FB, and then compare their per-
formance with previous works. The experimental results
show that our schemes are more efficient than the state-
of-the-art solutions.

The rest of this article is organized as follows. We introduce
the preliminaries in Section II. In Section III, we present our
two-level structure, fish-bone chain, for our CLOSE frame-
work. Then, the forward secure scheme CLOSE-F and the
forward and backward secure scheme CLOSE-FB are detailed
in Section IV and V, respectively. Experiments and evaluation
are detailed in Section VI. Finally, we state the related work
in Section VII, and conclude our paper in Section VIII.

II. PRELIMINARIES

A. Notations

For a finite set X , x
$← X means that x is uniformly selected

from X . |X | denotes the cardinality of the set X . Operator �
denotes the concatenation of strings. {0, 1}l denotes the set of
all binary strings of length l and {0, 1}∗ is the set of all binary
strings of finite length.

λ ∈ N denotes the security parameter. Unless specified
explicitly, the symmetric keys are strings of λ bits, and the key
generation algorithm uniformly samples a key from {0, 1}λ.
We only consider (probabilistic) algorithms and protocols
running in polynomial time in λ. Particularly, adversaries are
Probabilistic Polynomial-Time (PPT) algorithms.

A function negl : N → N is negligible in λ, if for all
positive polynomial p(·) and all sufficiently large λ, we have
negl(λ) < 1/p(λ).

A two-party protocol P between a client and a server is
denoted by P(cin; sin) → (cout; sout), which means the
client takes cin as input and outputs cout , and the server takes
sin as input and outputs sout .

B. Dynamic Searchable Symmetric Encryption (DSSE)

A document doc = (ind, Wind ) is labeled by an identifier
ind ∈ {0, 1}l and consists of a set of keywords Wind ⊆ {0, 1}∗.
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TABLE II

DESCRIPTION OF NOTATIONS IN OUR DSSE SCHEMES

Then, the database DB can be defined as (indi , Windi )
n
i=1,

where n is the number of documents in the database DB .
The set of keywords in the whole DB is W = ⋃n

i=1 Windi ,
and the set of documents containing a keyword w is denoted
by DB(w) = {indi | w ∈ Windi }. In this article, N is the
number of keyword/document pairs, and m = |W | is the total
number of keywords. Obviously, N can be written as N =∑n

i=1 |Windi | =
∑

w∈W |DB(w)|. The notations in our DSSE
schemes are shown in Table II

A dynamic searchable symmetric encryption (DSSE)
scheme � = {Setup, Search, Update} is comprised of three
protocols between a client and a server.
• Setup(λ; ⊥)→ (σ ; E DB) is a setup protocol. The client

takes a security parameter λ as input and creates a state
σ . The server initializes an encrypted database E DB .

• Search(σ,w; E DB)→ (σ 	, DB(w); E DB 	) is a search
protocol. The client takes the state σ and a keyword w as
input, and the server takes the encrypted database E DB
as input. After the execution of this protocol, the client
gets the search result DB(w) and the updated state σ 	.
The server gets the updated encrypted database E DB 	.

• Update(σ, DOC, op; E DB)→ (σ 	; E DB 	) is a update
protocol. The client takes the state σ , the documents
set DOC , and the operation op as input, and gets the
new state σ 	 after the update. The documents set DOC
consists of a number of keyword/document pairs. The
operation op is taken from the set {add, del} which
respectively means the addition and deletion of document
set DOC . Note that all update operations act on the key-
word/document pair (w, ind) rather than the document
(ind, Wind ). The server takes the encrypted database
E DB as input and finally gets the updated encrypted
database E DB 	.

C. System Model

The system model of CLOSE is shown in Fig. 1. There
are only two entities in the system: a client and a server. The
client can upload/update the encrypted documents (which are
stored in the fish-bone chain structure in our constructions)
to the server. Then, the client can generate a search token
for a particular keyword and sends it to the server to obtain
the search results which consists of encrypted documents

Fig. 1. The system model of CLOSE.

containing the specific keyword. When the client receives the
encrypted documents, it can decrypt them and obtain the plain
documents.

CLOSE is designed for the system in which the encrypted
documents are periodically updated. For example, the client
may retrieve emails from a mail server daily and add them into
the encrypted documents. Periodical update can be performed
on powerful devices such as personal computers. On the other
hand, searching needs to be performed at any time on any
device such as smartphones.

1) Threat Model: We consider a threat model that the server
is honest-but-curious [10]. In this model, the server will honest
perform the protocols designed in our schemes, but it tries to
obtain additional information from the encrypted documents
and from each protocol. For example, the server may try
to determine that whether newly added documents match a
previous search token, i.e., violating forward security.

D. Security Definitions

Besides those schemes based on expensive and powerful
techniques (e.g., multi-party computation, fully homomorphic
encryption, and oblivious RAM), all existing SSE schemes
leak more or less information, such as the number of doc-
uments in the result [1], [10], [17]. Therefore, as in most
SSE schemes, we do not want the adversary to learn anything
about the database and queries (i.e., search and update) beyond
some explicit leakage. Formally, the security of SSE scheme
is parameterized by a collection of leakage functions

L = (LSetup,LSearch,LUpdate),

which describes the information that the protocols leak to the
adversary.

The standard security definition of an DSSE scheme uses
the real world versus ideal world formalization [2], [4], [7].
Formally, we define two games: Real�A for the real world and
Ideal�A for the ideal world. A scheme � is secure if the two
games are indistinguishable, which means that the adversary
learns no more than the output of the leakage functions.

• In Real�A, the DSSE scheme is executed honestly. The
adversary A is given E DB generated by Setup(λ; ⊥)
as in the real case. The adversary can choose the key-
word w and receives the transcripts generated from the
protocol Search(σ,w; E DB). Moreover, the adversary
can choose a documents set DOC and an operation op
to receive the transcripts generated from the protocol
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Update(σ, DOC, op; E DB). Eventually, the adversary
outputs a bit b ∈ {0, 1}.

• In Ideal�A, the adversary gets a simulated transcript
in place of the real transcripts of the protocols. The
simulated transcripts are generated by a PPT sim-
ulator S who knows the output of leakage func-
tions. The encrypted database given to the adver-
sary is generated by S(LSetup(λ; ⊥)). The adversary
receives the transcripts generated from S(LSearch(w))
and S(LUpdate(DOC, op)) when performing search and
update operations. Eventually, the adversary outputs a bit
b ∈ {0, 1}.

Definition 1: A dynamic searchable symmetric encryption
scheme � is L-adaptively-secure if for all PPT adversary A,
there exists a PPT simulator S, such that

| Pr[Real�A(λ) = 1] − Pr[Ideal�A(λ) = 1]| ≤ negl(λ).

1) Common Leakage Function: The leakage function L
keeps the track of search query list Q. Each entry of Q is
a pair (t, w). The integer t is a counter, which is initially set
to 0, and incremented at each query, and w is the keyword in
the search query. For each keyword w, search pattern sp(w)
is defined as [10]

sp(w) = {t | (t, w) ∈ Q}.
In this article, we also use the notation of Hist DB(w)

as in [10]. It is the list of documents containing keyword w
historically added to DB , in the order of insertion. Particularly,
once the documents are added, the document identifiers are
included in the list whether they are deleted or not. For
example, Hist DB(w) = {ind1, ind2} means that the ind1
and ind2 are historically added to DB , but we do not know
if they have been deleted.

2) Forward Security: Forward security means that addition
operations do not leak whether a previously searched keyword
is in the added documents. We follow the formal definition in
[10].

Definition 2: A dynamic searchable symmetric encryption
scheme � is forward security if the update leakage function
LUpadate can be written as

LUpdate(DOC, op) = L	({indi ,
∣∣Windi

∣∣}, op).

Definition 2 means that the forward secure scheme leaks less
than operation, the identifiers, and the number of keywords in
the latest updated documents.

3) Backward Security: Let U be the track of update list
maintained by the leakage function L, whose entry is a triple
(t, op, (w, ind)). t is a counter as mentioned above, op ∈
{add, del} is the operation acted on the keyword/document
pair (w, ind). Then, as in [23], T imeDB(w) = {(t, ind) |
(t, add, (w, ind)) ∈ U and ∀t 	, (t 	, del, (w, ind)) �∈ U))}
denotes the list of all documents that contain the key-
word w and not deleted, and U pdates(w) = {t |
(t, add, (w, ind)) or (t, del, (w, ind)) ∈ U} denotes the list
of the timestamp (the counter) of all updates on w. Backward
security means that the search queries on keyword w do not
reveal the documents which have been already deleted. We
follow the formal definition in [23].

Fig. 2. An illustration of fish-bone chain.

Definition 3: A dynamic searchable symmetric encryption
scheme � is backward security if the update leakage function
LUpadate and the search leakage function LSearch can be
written as

LUpdate(DOC, op) = L	({indi ,
∣∣Windi

∣∣}, op),

LSearch(w) = L		(T imeDB(w), U pdates(w)).

III. FISH-BONE CHAIN: A TWO-LEVEL STRUCTURE

To design the CLOSE framework, we need a new structure
that is different from previous works, in which size of the
state is independent with the number of keywords. To this
end, we propose a two-level structure, called fish-bone chain,
which consists of Logical Keyword Index Chain (LoKIC)
and Document Index Chain (DIC). We call this two-level
structure fish-bone chain because that LoKIC looks like spine
and DIC looks like ribs for a fish. This structure represents
the encrypted database and is the core building block of our
constructions, including CLOSE-F and CLOSE-FB. With the
fish-bone chain structure, the state stored on the client side can
be reduced to a constant. An illustration of fish-bone chain is
shown in Fig. 2.

A. Logical Keyword Index Chain (LoKIC)

As explained in Section I, forward security is the basic
requirements for a DSSE scheme. Therefore, the first step
towards our structure design is to satisfy forward security. In
most existing forward secure DSSE schemes, users need to
maintain an inverted index locally, which stores the current
state of each keyword for generating search tokens [13].
These states will be updated when keyword/document pairs are
added or deleted. Therefore, the storage cost on the client side
grows linearly with the number of keywords in the database.

To solve this problem, we design a Logical Keyword Index
Chain (LoKIC) instead of the inverted index, which only stores
a secret key and a global counter on the client. With this logical
structure, users can generate the latest search tokens for any
keyword without knowing the current state of that keyword.
In other words, CLOSE achieves constant client storage cost
via the design of LoKIC.

Let H (·) be a cryptographic hash function, a LoKIC for a
keyword w consists of C Len search tokens

H C Len(ktw), H C Len−1(ktw), . . . , H (ktw),
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where ktw is a secret keyword token for the keyword w, and

H j (ktw) =
{

H (ktw), j = 1,

H (H j−1(ktw)), j ≥ 2.

Given a search token H ctr(ktw) for the keyword w and the
global counter 1 ≤ ctr ≤ C Len, the server can compute all
the search tokens on LoKIC before H ctr(ktw) by iteratively
invoking the hash function. That means the server can obtain
C Len − ctr + 1 search tokens.

H ctr(ktw), · · · , H C Len(ktw).

However, because of one-way attribute of the hash function,
the server cannot obtain any search token after H ctr(ktw) on
LoKIC, e.g., H ctr−1(ktw).

The computation of hash function for ctr times on the
client and C Len− ctr times on the server makes extra search
computation cost. Fortunately, the cost of extra computation
is acceptable in practice as shown in Section VI.

B. Document Index Chain (DIC)

If each search token only corresponds to a single key-
word/document pair as in [11], the global counter ctr will
soon exhaust when the number of keyword/document pairs is
large. Obviously, this approach incurs heavy rebuilding cost.

To tackle this problem, we design another structure on the
top of LoKIC, called Document Index Chain (DIC). Roughly
speaking, each node (i.e., search token) on LoKIC corresponds
to a (maybe empty) DIC, and each node on DIC encodes a
keyword/document pair for a certain keyword in one update
(how to encode a keyword/document pair depends on the
security requirement of the DSSE scheme). With this DIC
structure, we can update database for C Len times no matter
how many documents are included in one update.

Since the LoKIC is only a logic structure, the encrypted
database E DB is actually the set of DICs which store all
keyword/document pairs.

C. Construction of Fish-Bone Chain

Let lookup(DICT, key) be a function that returns the
element labeled by key in a dictionary DICT . If there
is no element labeled by key, this function will return a
special element ⊥. A fish-bone chain scheme consists of two
algorithms (CSearch, CUpdate) as follows.

1) Chain Update Algorithm CUpdate(st, dic, msg) →
dic	: This algorithm takes as input a search token st , a DIC
dic with respect to st , and a message msg, and updates
the DIC dic	 that has msg encoded. The detail is shown in
Algorithm 1.

In our construction, the head node of a DIC with respect to
a search token st is always labeled by H (st�0). Therefore,
the algorithm first checks whether the DIC is empty by
retrieving the node labeled by H (st�0) (Line 1-2). If dic is
empty, a head node is created and msg is encoded into this
node, where ⊥ means that this node is the last node on dic
(Line 4-5); otherwise, a new head node will replace the old
one and these two nodes are connected by a random token r t
(Line 7-10). Finally, the updated dic	 is returned (Line 12).

Algorithm 1 CUpdate(st, dic, msg)→ dic	
1: key← H (st�0)
2: value← lookup(dic, key)
3: if value = ⊥ then
4: value← H (st�1)⊕ (msg�⊥)
5: dic← dic ∪ {(key, value)}
6: else
7: dic← dic \ {(key, value)}
8: r t

$← {0, 1}λ
9: dic← dic ∪ {(key, H (st�1)⊕ (msg�r t))}

10: dic← dic∪ {(H (r t�0), H (r t�1)⊕ H (st�1)⊕ value)}
11: dic	 ← dic
12: return dic	

Algorithm 2 CSearch(E DB, C Len, ctr, st)→ res
1: j ← ctr; RE S ← ∅
2: while j ≤ C Len do
3: key← H (st�0)
4: value← lookup(E DB, key)
5: if value �= ⊥ then
6: (msg�r t)← value ⊕ H (st�1)
7: while r t �= ⊥ do
8: res ← res ∪ {msg}
9: value← lookup(E DB, H (r t�0))

10: (msg�r t)← value ⊕ H (r t�1)

11: res ← res ∪ {msg}
12: j ← j + 1
13: st ← H (st)
14: return res

2) Chain Search Algorithm CSearch(E DB, C Len, ctr, st)
→ res: This algorithm takes as input an encrypted database
E DB (the set of DICs), a system constant C Len, a global
counter ctr , and a search token st , and outputs a search result
res with respect to st . The detail is shown in Algorithm 2.

For a given search token st , this algorithm traverses from
the (C Len− ctr +1)-th node on LoKIC to the first one (Line
2-13). More specifically, this algorithm computes C Len −
ctr search tokens H (st), · · · , H C Len−ctr(st) and uses these
search tokens along with st to obtain all non-empty DICs. For
each non-empty DIC whose head node is labeled by H (st�0),
this algorithm traverses this DIC and retrieves all encoded msg
(Line 6-11). The traversal of a DIC depends on the random
token r t encoded in each node on the DIC. Finally, a set res
of all msg is returned (Line 14).

IV. FORWARD SECURE DSSE: CLOSE-F

In this section, we instantiate our CLOSE framework and
propose a DSSE scheme which achieves constant client stor-
age cost, forward security, and nearly optimal computational
efficiency whether in theory or practice, called CLOSE-F.

A. Overview

CLOSE-F consists of three protocols: Setup, Update, and
Search, as described in Section II-B. In Setup, the client
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Algorithm 3 Setup(λ, C Len; ⊥)→ (σ ; E DB, C Len)

Client:
1: k

$← {0, 1}λ
2: ctr ← C Len
3: σ ← (k, ctr)
4: E DB ← ∅
5: Send E DB, C Len to the Server.

initializes the DSSE system with some initial values and struc-
tures used in other protocols. In Update, keyword/document
pairs are encoded by the client for further search. More
precisely, for each keyword in the update, a DIC is constructed
based on the current global counter and stored on the server.
In Search, the client generates a search token based on the
keyword and current global counter and sends the search token
to the server. Then, the server uses the search token to produce
all required nodes on LoKIC and searches for the documents
which are stored in DIC. The three protocols of CLOSE-F is
sketched in Fig. 3.

B. Construction of CLOSE-F

Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a pseudo-random
function. The three protocols of our scheme CLOSE-F are
described as follows.

1) The Setup Protocol: The formal description of Setup
is shown in Algorithm 3. In our scheme, the length of
LoKIC is set to a constant C Len in advance, therefore we
use Setup(λ, C Len; ⊥) → (σ ; E DB, C Len) in CLOSE-F
instead of Setup(λ; ⊥)→ (σ ; E DB).

Since the state consists of the secret key k (for generating
the keyword token) and the global counter ctr (for generating
the search token), the storage cost on the client side is constant
and extremely small. The client creates an empty E DB for the
fish-bone chain and sends it to the server.

2) The Update Protocol: Algorithm 4 describes Update
formally. In our forward secure scheme, we only consider the
addition operation, and therefore we use Add(σ, DOC; E DB)
to denote Update(σ, DOC, add; E DB) for simplicity.

To add a document set DOC into E DB , we perform the
operation on every keyword/document pair. The client first
takes a document doc out (Line 4-5), and then processes
each keyword of that document (Line 7-16). If w is not
in the dictionary K W , the client computes the search token
stw = H ctr(ktw) for that keyword, where ktw = F(k, w) is
the keyword token (Line 12). Then, the client inserts (w, stw)
into K W and initializes an empty DIC dicw (Line 13-14).
The chain update algorithm CUpdate is invoked to encode
the document identifier ind into the DIC dicw (Line 16).
Finally, the client updates the state and sends the addition
dictionary ADD to the server (Line 17-18) who adds ADD
to the encrypted database E DB (Line 19).

The storage, computation, and communication complexities
of the Add protocol on the server side are related to the number
of keyword/document pairs in the document set DOC . All
these complexities are optimal as in [10], [18]. The constant
C Len means that we can only take the add operation for C Len

Algorithm 4 Add(σ, DOC; E DB)→ (σ 	; E DB 	)
Client:
1: Parse σ as (k, ctr)
2: ADD← ∅; K W ← ∅
3: while |DOC| �= 0 do

4: doc
$← DOC

5: DOC ← DOC \ {doc}
6: Parse doc as (ind, Wind )
7: while |Wind | �= 0 do

8: w
$← Wind

9: Wind ← Wind \ {w}
10: stw ← lookup(K W, w)
11: if stw = ⊥ then
12: ktw ← F(k, w); stw ← H ctr(ktw)
13: K W ← K W ∪ (w, stw)
14: dicw ← ∅; ADD← ADD ∪ dicw

15: dic	w ← CUpdate(stw, dicw, ind)
16: ADD← ADD ∪ dic	w
17: σ 	 ← (k, ctr − 1)
18: Send ADD to the Server
Server:
19: E B D	 ← E DB ∪ ADD

times. After that, we have to rebuild the fish-bone chain with
a new secret key and a new counter. To this end, the client
first obtains the encrypted database E DB from the server and
recovers the document set DOC from E DB through searching
all the keywords locally. Then, the client invokes Algorithm 4
with σ = (k∗, C Len), where k∗ is the new secret key. This
rebuilding process will not introduce additional leakage and
the amortized cost is O((C Len × m + N)/N), where m is
the number of distinct keywords and N is the number of
keyword/document pairs in the database.

3) The Search Protocol: Search is described formally in
Algorithm 5. To find the documents containing a keyword w
in the encrypted database E DB , the client computes the search
token stw by hashing the keyword token ktw = F(k, w) for
ctr times (Line 2). Then, the client sends stw together with
the global counter ctr to the server (Line 4), who then invokes
the chain search algorithm CSearch to obtain the document
set DB(w) (Line 5).

The computation complexity of the Search operation is
O(C Len + |DB(w)|), which is a little greater than the
optimal one O(|DB(w)|). The communication complexity is
the optimal O(|DB(w)|).

C. Security Analysis

In this section, we analysis the security of CLOSE-F.
Intuitively, since the hash function is one-way, the server
cannot decrypt the identifiers stored in a DIC unless the client
produces preceding search token for that DIC. Therefore,
CLOSE-F achieves forward security, which is formalized in
the following theorem.

Theorem 1: Let F be a pseudo-random function,
and H be a cryptographic hash function. CLOSE-F
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Fig. 3. The framework of CLOSE-F. This figure represents the logical view of DICs stored on the server. From the perspective of the server, all DICs are
mixed up and it is even impossible to determine whether two nodes belong to the same DIC.

Algorithm 5 Search((σ,w); E DB) →
((σ 	, DB(w)); E DB 	)
Client:
1: Parse σ as (k, ctr)
2: ktw ← F(k, w); stw ← H ctr(ktw)
3: σ 	 ← σ
4: Send ctr, stw to the Server

Server:
5: DB(w)← CSearch(E DB, C Len, ctr, stw)
6: E DB 	 ← E DB
7: Send DB(w) to the Client

is L-adaptive-secure in the random oracle model,
where the collection of leakage functions LC L OS E−F =
(LC L OS E−F

Setup ,LC L OS E−F
Search ,LC L OS E−F

Update ) is defined as follows.

LC L OS E−F
Setup (C Len, λ) = ⊥,

LC L OS E−F
Search (w) = (sp(w), HistDB(w)),

LC L OS E−F
Update (DOC, op) = (

∑
w∈W

|DB(w)|, op).

Proof: Our proof uses the hybrid argument which consists
of a series of games. The first game Game0 is exactly the same
with the real world SSE game, while the last game Game3 is
exactly the same with the ideal world SSE game.

Game0. This game is the real world SSE security game
Real. Therefore, we have

Pr[RealC L OS E−F
A (λ) = 1] = Pr[Game0 = 1].

Game1. In this game, we maintain a table Key to perform
pseudo-random function, which is indexed by the keyword w.
For each keyword w, Key records a random string that is
binded to the keyword. That is, the system chooses a random
keyword token ktw rather than computing the keyword token
from the pseudo-random function F . Precisely, the system
picks a new random string if it is confronted to a new w, and
stores the sting in a table Key so that it can be reused when w
is queried again. If an adversary can distinguish Game1 from
Game0, we can distinguish F from a real random function.
That is, we can build an efficient adversary B1 such that:

Pr[Game0 = 1] − Pr[Game1 = 1] ≤ Adv
pr f
F,B1

(λ).

Game2. In this game, we maintain three tables H, H1, and
H2 to answer the random oracle query, where H records the
response to H ctr(ktw), and H1 and H2 record the response
to H (stw�0) and H (stw�1), respectively. Because we only
consider the addition operation, the Update leakage function
is also defined as LAdd(DOC) = ∑

w∈W |DB(w)| which
only leaks the number of keyword/document pairs. The search
token stw in the Add protocol is generated as random string
instead of calling hash function H for ctr times. Also, the hash
function h1 = H (stw�0) and h2 = H (stw�1) in the progress
of generating tokens are replaced by random strings. Then the
random oracle H is programmed to ensure that H ctr(ktw) =
stw , H (stw�0) = h1, and H (stw�1) = h2 in the search
protocol. Every time to call hash function, we keep the track
of transcripts via the tables H, H1, and H2 respectively. If an
adversary can distinguish Game2 from Game1, we will be
able to distinguish H from real random function. Formally,
we can build an efficient adversary B2 such that:

Pr[Game1 = 1] − Pr[Game2 = 1] ≤ Advhash
H,B2

(λ).

Game3. In this game, we maintain a table Update for
generating search token, which is indexed by the keyword. In
the search protocol, Game3 generates the search token stw by
hashing ctr times instead of a used one. We use the immediate
table Update which maps the keyword to the update counter
instead of mapping the keyword to the value picked from DIC.
Hence, we have

Pr[Game2 = 1] = Pr[Game3 = 1].
Simulator. Game3 and IdealS,L are identical except that

Simulator in IdealS,L uses the counter w̄ = min sp(w)
uniquely using the leakage function instead of the key w itself.
Hence, we have

Pr[Game3 = 1] = Pr[IdealC L OS E−F
A (λ) = 1].

Conclusion. Combining all games, by stating hash function
H is a one-way function and F is a pseudo-random function,
there exists two adversaries B1, B2 such that

Pr[RealC L OS E−F
A (λ) = 1] − Pr[IdealC L OS E−F

A (λ) = 1]
≤ Adv

pr f
F,B1=1(λ)+ Advhash

H,B2
(λ).

Then, the theorem is proved. �
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Fig. 4. An illustration of CLOSE-FB.

Note that the forward security preserves even if the adver-
sary has additional background knowledge, such as the most
frequent keyword that has been searched before. That is
because the update is indistinguishable from a random string
of the same length.

V. FORWARD AND BACKWARD SECURE DSSE:
CLOSE-FB

To achieve forward and backward security simultaneously,
we propose another DSSE scheme in this section, called
CLOSE-FB, which is also an instantiation of our CLOSE
framework. Though CLOSE-FB achieves backward security
compared with CLOSE-F, it needs two round of communica-
tion in the search protocol which will increase the computation
and communication costs on the client side.

A. Overview

As the same with CLOSE-F, CLOSE-FB also consists of
three protocols: Setup, Update, and Search. One difference
between CLOSE-F and CLOSE-FB is that instead of ind ,
we encode the (ind||op) in each node of the DIC to support
deletion and backward security. Another difference is that
CLOSE-FB needs to take two rounds to perform the search
protocol. As shown in Fig. 4, when the client sends a search
token to the server, the server searches the encrypted docu-
ments for the specific keyword and returns all entries which
contains identifiers of added and deleted documents to the
client. Finally, the client calculates the difference of two parts
and sends the identifiers of documents to the server for the
final search results.

B. Construction of CLOSE-FB

Let (Enc, Dec) be the encryption and decryption algorithms
of some symmetric encryption scheme (e.g., AES). The three
protocols of our scheme CLOSE-FB are described as follows.

1) The Setup Protocol: The formal description of Setup for
CLOSE-B is shown in Algorithm 6. Different from CLOSE-
F, we need two secret keys in CLOSE-FB. One is used to
generate keyword tokens, the other one is used to encrypt
(ind�op). As a result, we generate k1 and k2 in the setup
protocol and add both two secret keys into the client state
(Line 3). Finally, the client initiates E DB and sends to the
server (Line 4-5).

Since the state only consists of two secret keys k1, k2 and
the global counter ctr , the local storage cost is still constant
and extremely small as the same with CLOSE-F.

Algorithm 6 Setup(C Len, λ; ⊥)→ (σ ; E DB)

Client:
1: k1

$← {0, 1}λ; k2
$← {0, 1}λ

2: ctr ← C Len
3: σ ← (k1, k2, ctr)
4: E DB ← ∅
5: Send E DB to the Server.

Algorithm 7 Update(σ, DOC, op; E DB)→ (σ 	; E DB 	)
Client:
1: Parse σ as (k1, k2, ctr)
2: U P D AT E ← ∅; K W ← ∅
3: while |DOC| �= 0 do

4: doc
$← DOC

5: DOC ← DOC \ {doc}
6: Parse doc as (ind, Wind )
7: while |Wind | �= 0 do

8: w
$← Wind

9: Wind ← Wind \ {w}
10: stw ← lookup(K W, w)
11: if stw = ⊥ then
12: ktw ← F(k1, w); stw ← H ctr(ktw)
13: K W ← K W ∪ (w, stw)
14: dicw ← ∅;U P D AT E ← U P D AT E ∪ dicw

15: indop← Enc(k2, ind�op)
16: dic	w ← CUpdate(stw, dicw, indop)
17: U P D AT E ← U P D AT E ∪ dic	w
18: σ 	 ← (k1, k2, ctr − 1)
19: Send U P D AT E to the Server.
Server:
1: E B D	 ← E DB ∪U P D AT E

2) The Update Protocol: Details of Update are described
in Algorithm 7. To support deletion operation and achieve
backward security, we encrypt the entry (ind�op) with secret
key k2 and store the encrypted form of the entry in the node
on DIC (Line 15). The rest of this algorithm is similar to
Algotihm 4.

With the encrypted entry (ind�op), we can recognize what
operation is taken to the documents. Thus, we can not only add
documents to E DB , but also delete documents from E DB .
Encrypted forms of entry prevent adversary from eavesdrop-
ping the information of update operation.

3) The Search Protocol: We describe Search of CLOSE-
FB in Algorithm 8 specifically. The difference between this
algorithm and Algorithm 5 is that the server in this algorithm
only obtains encrypted entry (ind�op) from the chain search
algorithm CSearch. Therefore, the server sends all encrypted
entries to the client for the exact identifiers of corresponding
documents. The client decrypts every encrypted entry with
secret key k2. Then, it add documents identifiers whose op
is equal to add to DB(w) and delete documents identifiers
whose op is equal to del. Finally, the client sends all identifiers
to the server to obtain the specific documents.
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Algorithm 8 Search((σ,w); E DB) →
((σ 	, DB(w)); E DB 	)
Client:
1: Parse σ as (k1, k2, ctr)
2: ktw ← F(k1, w); stw ← H ctr(ktw)
3: σ 	 ← σ
4: Send ctr, stw to the Server.

Server:
1: res ← CSearch(E DB, C Len, ctr, stw)
2: E DB 	 ← E DB
3: Send res to the Client.

Client:
1: DB(w)← ∅
2: while |res| �= ⊥ do

3: indop
$← RE S

4: res ← res \ {indop}
5: (ind�op)← Dec(k2, indop)
6: if op == add then
7: DB(w)← DB(w) ∪ {ind}
8: else
9: DB(w)← DB(w) \ {ind}

C. Security Analysis

CLOSE-FB achieves both forward security (Definition 2)
and backward security (Definition 3). The proof is similar
to the one in Section IV-C. The only difference between
CLOSE-F and CLOSE-FB is that the server can directly obtain
ind when it receives the search token in CLOSE-F, while in
CLOSE-FB the server can only obtain the encrypted form
of ind . Therefore, the simulator needs to replace ind with
random strings in the game. Roughly speaking, every time we
update E DB , we need to generate new search tokens for new
entries. Therefore, there is no doubt that entries that server
observe during the update are indistinguishable from random.
In addition, the server does not know the type of operation.
The only thing the update protocol leaks is the number of
entries. For backward security, the server has the knowledge
of the number of entries related to the keyword w and the
time every update operation for keyword w took place. The
search protocol reveals nothing more to the server. Particularly,
the server can not figure out which deletion deletes which
addition.

VI. EVALUATION

In this section, we evaluate our schemes (i.e., CLOSE-F
and CLOSE-FB) and compare them with related schemes.
All schemes are implemented in Python 3 with the Python
Cryptography Toolkit (pycrypto). The pseudo-random function
F was instantiated using HMAC. We ran our experiments on
a server with two Intel Xeon E5-2630 v3 CPUs and 128GB
of RAM that running on Linux Ubuntu 14.04.5.

A. Dataset

We adopted the well-known Enron email dataset to eval-
uate our experiments, which is 1.32 GB when decom-

TABLE III

DATABASES SIZES

TABLE IV

STORAGE COST ON THE CLIENT SIDE

pressed [24]. We exploited RAKE, a python implementation
of the rapid automatic keyword extraction, to extract keywords
from the Enron email dataset. After discarding some files in
BASE64 encoding, we got 517,080 plain-text files. From those
files, we extracted 390,423 keywords, and the total number
of keyword/document pairs was 22,900,317. To analyze the
impact of database size, we also derived three databases
from the Enron email dataset. The detailed information of all
databases used in our experiments is shown in Table III.

B. Evaluation of Client Storage Cost

The client storage comparison of CLOSE-F and CLOSE-
FB with previous schemes (i.e., Sophos [10], KKL+ [18],
Mitra [22], SDa [14], and SDd [14]) is shown in Table IV.
Note that, running KKL+ on DB3 and Enron needs more
than a week (see Section VI-C), therefore, we omit these two
experiments.

From the table, we can conclude that the storage costs of
Sophos, KKL+, and Mitra increase with the size of database,
while the storage costs of SDa , SDd , CLOSE-F, and CLOSE-
FB are constant. Precisely, the storage cost on the client side
grows with the number of keywords in the first three schemes.
That is because those schemes employed an inverted index to
keep the state for every keyword, while our schemes only
store a secret key and a global counter. In SDa and SDd ,
the client can only possess a single master key, at the cost
of increasing the computation and communication costs in the
update protocols.

C. Evaluation of Computation Cost

Now, we discuss the computation costs of CLOSE-F,
CLOSE-FB, Sophos [10], KKL+ [18], Mitra [22], SDa [14],
and SDd [14].

Table V shows the update time of all schemes on four
different databases. One can find that the update time of
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TABLE V

COMPUTATION TIME IN THE UPDATE PROTOCOL

CLOSE-F, CLOSE-FB, Mitra, SDa , and SDd is much better
than the other two schemes, especially KKL+. Sophos needs
to carry out many exponentiation to generate search tokens and
update tokens in the update process, and therefore is inefficient
in practice. In KKL+, the state of inverted index and dual
dictionary needs to be updated frequently, which makes it even
more inefficient than Sophos. CLOSE-F and CLOSE-FB only
compute hash functions, and Mitra only uses hash functions
and exclusive OR to update the whole database. Thus, these
three schemes are efficient in practice. The computation costs
of SDa and SDd are higher than CLOSE-F, CLOSE-FB, and
Mitra due to their frequent rebuilding process. Moreover,
the rebuilding process also introduces a greater communication
overhead in the update protocol. We also investigated the
impact of the length of LoKIC on efficiency in our scheme.
As shown in Table V, the update time grows with C Len since
the length of LoKIC determines the times of hash function.
Even C Len is 2000, the computation cost of our scheme is
acceptable in practice.

Then, we evaluated the computation cost in the search
protocol. Fig. 5 shows the performance of four schemes on
the same database. Since Sophos and CLOSE-F only support
addition operation, the number of matching entries in the
picture denotes the number of matching documents for these
two schemes. While Mitra and CLOSE-FB support addition
and deletion operations for the same time, the search time
for these two schemes are associated with the number of
matching entries. It is obvious that search time of the proposed
two schemes in this article grows slowly with the number of
matching entries, which stands out in all schemes. Since the
computation cost of KKL+ is huge (1.33s when the number
of matching documents is 1), we omit its experimental results
in all the rest figures.

Fig. 6 describes the effects of the length of LoKIC. With
the growth of number of matching entries, the search time
of CLOSE-F and CLOSE-FB increases slowly. The increase
rate of search time with different C Len is similar. The results
indicate that the search time is related to the length of LoKIC,
i.e., growing with C Len.

Fig. 7 depicts the search performance on four databases
for CLOSE-F. The results indicate that the search time is

Fig. 5. Comparison of different schemes in the search process.

Fig. 6. Comparison of our schemes with different length of LoKIC (i.e.,
C Len) in the search process.

irrelevant to the database size. Since the number of matching
documents grows when the database gets larger, CLOSE-F is
more suitable for large databases. As the same, the search time
of CLOSE-FB is irrelevant to the database size too.

D. Summary of Experiments

CLOSE-F, CLOSE-FB, Sophos, KKL+, and Mitra are all
forward secure SSE schemes. Among these five schemes,
CLOSE-FB and Mitra achieve backward security. Although
KKL+ achieves optimal computation complexity in theoretical
analysis (see Table I), the performance in practice is extremely
poor. This fact also prompted us to design an efficient SSE
scheme in practice rather than in theory. Sophos is also
inefficient in practice since it employed public-key primitives.
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Fig. 7. Comparison of CLOSE-F in different database in the search process.

The performance of Mitra is similar to our scheme. However,
Mitra performs a little worse than CLOSE-FB since there is
one more operation exclusive OR in the search protocol. To
conclude, CLOSE-F is the first efficient forward secure DSSE
scheme in practice, and CLOSE-FB is the first efficient DSSE
scheme with both forward and backward security.

VII. RELATED WORK

Searchable Symmetric Encryption (SSE) was first intro-
duced by Song et al., and a construction with linear search
time was also proposed [1]. Curtmola et al. then gave the
first construction with sub-linear search time by employing an
inverted index, which maintains a list of document identifiers
per keyword [2]. Subsequent researches also focused on the
static case, where the encrypted database is no longer changed
after it is stored on the cloud server [3], [4], [25], [26].

To support database update, researchers then introduced
dynamic SSE (DSSE), which allows users to add and/or
delete keyword/document pairs in the database [16], [27], [28].
Many researchers focused on the improvement of computation
complexity in the search protocol. The first DSSE scheme with
sub-linear search time was proposed by Kamara et al. [7], but
their solution reveals the hashes of keywords contained in the
updated documents. Kamara and Papamanthou later fixed this
problem by increasing the space complexity [8]. Nevertheless,
all of those solutions suffer from more sophisticated attacks,
such as the leakage-abuse attack [29] and the file-injection
attack [15]. These attacks make researchers realize that for-
ward security, which was formally introduced in [17], is an
essential property for DSSE.

Although Stefanov et al. proposed a forward secure DSSE
scheme in [17], their solution has poor computation complex-
ity since it rebuilds the level of data structure in the update
protocol. Some schemes achieve forward security via using
complex cryptographic technology (e.g., oblivious RAM [30]),
however, suffer from heavy computation costs [9], [31].
Schemes with both optimal computation complexity in theory
and forward security also have more or less drawbacks [10],
[11]. Sophos generates search tokens with inverted index
and sends to the server for further search without leaking
the real keywords themselves [10]. Sophos makes use of
trapdoor permutation to create connection between the search

tokens and update tokens, which provides better theoretical
computation complexity than [31]. Nevertheless, Sophos is
inefficient in practice since the trapdoor permutation is based
on public-key primitives.

Backward security was informally mentioned in [17]. Then
Bost et al. gave the formal definition of backward secu-
rity and constructions which achieve this property [11]. The
scheme Dianadel in [11] suffers from the limitation of key-
word/document pairs, and Janus suffers from the inefficiency
of puncturable encryption. After that, Chamani et al. [22]
proposed three schemes. Mitra achieves both optimal com-
putational and communicational complexity, while needs two
round communication. The left two schemes sacrifice the cost
of computation and communication for backward security. Sun
et al. [23] proposed symmetric puncturable encryption which
improves the puncturable encryption in [11].

VIII. CONCLUSION

In this article, we focused on DSSE in practice and
proposed the first efficient DSSE framework with constant
client storage cost, named CLOSE. To achieve the compu-
tational efficiency and security, we designed a novel two-level
structure, called fish-bone chain, that consists of LoKIC and
DIC. We instantiate two schemes, CLOSE-F and CLOSE-
FB, under the CLOSE framework. Then, we implemented
CLOSE-F, CLOSE-FB and three previous schemes to evaluate
the performance. The experimental results showed that our
schemes perform better than the best existing schemes.
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