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a b s t r a c t

Privacy-preserving data aggregation is becoming a demanding necessity for many promising scenarios,
e.g., health care analysis. Sensitive data are collected and aggregated in a privacy-preserving approach
using current Internet of Things (IoT) technology, leading to immense challenge and consequent
interest in developing secure computing algorithms for individual and organizational data. However,
most existing solutions focus on specific evaluations (e.g., SUM), and they use heavy cryptographic
techniques, which are far from practice for constrained IoT devices. The Trusted Execution Environment
(TEE, implemented with Intel SGX) can assist in computing arbitrary functions and avoiding resource-
consuming operations. Nevertheless, TEE is subject to several challenges because TEE is vulnerable
to limited resource and even function violations, e.g., the attacker may bypass the boundary of TEE.
In this paper, we propose a lightweight non-interactive privacy-preserving data aggregation scheme
for resource-constrained devices, named PANDA, where TEE is introduced to bypass the trusted
entities requirement and heavy overhead. Additionally, PANDA explores the certificate-aided function
authorization to prevent leakage from unauthorized functions, and designs the public verifiable
certificate management to detect the abnormal behaviors of the host to mitigate the external host
compromise. We formalize PANDA with rigorous security analysis to indicate privacy protection
against the compromised aggregator and analyst. The evaluation results show that PANDA has constant
online communication cost and lightweight computation overhead for constrained devices, which is
suitable for IoT applications.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

With the wise combination of cloud computing and the Inter-
et of Things (IoT), cloud-enabled IoT has become an irresistible
orce to change the model of production and lifestyle. Smart city,
ealth care, virtual reality, etc., these sophisticated IoT applica-
ions demand more from the computing power, storage capacity,
nd battery capacity of IoT terminals. The main superiority of
loud-enabled IoT is to carry out the resource-consuming tasks on
cloud server rather than on the resource-limited IoT terminals,
hich grows the functionality scope and eases pressure on IoT
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devices. For example, in the health care analysis systems, the
emerging wearable devices and applications can detect physical
conditions from heart rate to oxygen levels, which provide abun-
dant data for advanced medical development. The users’ health
data are transmitted to the cloud server (aggregator), which at-
tempts to compute an aggregation function (e.g., SUM, MAX, or
VAR) on these data (Fig. 1).

However, secure data aggregation in a privacy-preserving ap-
proach is still a demanding task. It arouses practical concerns
since the trusted cloud server is hard to implement in the real
world. Thus, the concept of Privacy-preserving Data Aggregation
(PDA) emerged to solve this problem. PDAs refer to the processes
of selecting and analyzing relevant data to get the desired results
for certain purposes, which have been widely studied in various
scenarios, such as mobile sensing [1,2], fog computing [3–5],
wireless sensor networks [6–8], and machine learning [9,10].
Nevertheless, most of them do not apply to IoT scenarios due
to the high computation overhead and frequent interactions that
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Table 1
Comparison with previous works.
Scheme Techniques No trusted Non-interactive Arbitrary Constant online

aggregator functions communication

Groat–He–Forrest [6] Adding Camouflage values � × × ×

Jung et al. [11] Multi-variate polynomial evaluation � � × ×

Zhang–Chen–Zhong [1] Bitwise-XOR HE × � � ×

Mohassel–Zhang [10] Secret share + MPC � � × ×

Bonawitz et al. [9] MPC � � × ×

Gong et al. [12] Unique sequence number � × � ×

Guo–Tian–Cho et al. [4] Symmetric HE × � � ×

Zhao et al. [5] Somewhat HE � � × ×

PANDA Authenticated encryption + TEE � � � �
l
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Fig. 1. The diagram of data aggregation. Data owners send their data to the
aggregator in a secure manner, e.g., encryption. The aggregator provides different
aggregation services for various applications, e.g., scientific analysis, business
advertisement, and government affairs.

are relatively expensive for constrained IoT devices, and existing
PDAs that focus on specific functions cannot satisfy the diversity
demand of smart services.

1.1. Motivations

Depending on the interaction between data owners and the
aggregator, existing PDA solutions can be classified into two
categories: the interactive and the non-interactive schemes.

Interactive solutions usually distribute the process to end de-
ices, in which the data are maintained and manipulated by data
wners, who interact with the aggregator repeatedly. The most
epresentative interactive solutions are federated learning based
chemes [9,13–15] and secure Multi-Party Computation (MPC)
ased schemes [16–19]. In federated learning [20–22], a cen-
ralized model is generated by aggregating parameter updates
rained locally on end devices. However, sensitive information
till may be inferred from the parameter updates [9,13,15]. Sim-
larly, MPC [23–26] is a subfield of cryptography that aims to
ointly compute a function over participants’ inputs while en-
uring privacy, which is an evident approach for PDA. Unlike
ederated learning, MPC involves only the data owners, there is no
eed for a trusted aggregator. However, the interactivity of MPC
akes it inefficient in PDA scenarios, which generally involve
assive data.
Instead of interactive approaches, non-interactive solutions

sually aggregate data by transmitting them to a center acquired
o undertake the bulk of computations. No more frequent inter-
ctions are required between data owners and the aggregator.
he most significant technique in non-interactive PDA solutions
s Homomorphic Encryption (HE) [27,28] that is widely used for
rivacy-preserving outsourced computation [29–31]. Specifically,
E allows generating an encrypted result directly on the ci-
hertexts, corresponding to the result on the plain items. There
 c

29
have been many works [4,32–34] that addressed PDA by using
HE due to its ciphertext-based operating capability. However,
these solutions utilized computation on ciphertexts, which also
introduced expensive cryptographic operations.

In addition, most existing PDA schemes [35,36] focus on spe-
cific functions (e.g., SUM), which means a specific protocol should
be redeployed once the aggregation function is changed. To com-
pute arbitrary functions, Zhang–Chen–Zhong [1] utilized a unique
sequence number to enable the aggregator to obtain the exact
distribution of the data aggregation. Gong et al. [12] improved [1]
by introducing the Diffie–Hellman key exchange, which brought
in additional interactions. Moreover, they ignored the fact that
‘‘arbitrary functions’’ may cause leakage from certain functions
(e.g., f (x) = x depicted in Section 6).

In a nutshell, it is still an open question that:

Is it possible to design a lightweight PDA solution, which can
compute arbitrary functions on massive multi-source data with
constrained IoT devices?

We answer this question in the affirmative and conclude our
challenges and contributions as follows.

1.2. Challenges and contributions

Below, we sketch PANDA, a non-interactive PDA system de-
ployed in the cloud-enabled IoT scenarios aiming to address this
above-mentioned open question, along with associated techni-
cal explanations. Concretely, the cloud server is tailored with
the Trusted Execution Environment (TEE, implemented with In-
tel SGX), an environment executing code with high trust. Note
that introducing TEEs in PDA is not trivial since there are two
challenges to be solved: (1) Resource limitation. IoT scenarios
generally involve massive records across a large population of
data owners. Given the situation of constrained terminals and
the TEE with very limited storage, a lightweight function eval-
uation mechanism for PDA should be provided to remedy this
challenge. (2) Uncontrolled functions. PANDA suffers the under-
ying vulnerability of function violations, which manifests in two
roblems. One is, the goal of PDAs for arbitrary functions raises
he vulnerability of leakage from functions that data owners do
ot authorize. The attacker may maliciously initiate a task of
omputing a problematic function to infer sensitive information,
hich cannot be mitigated only by the TEE. The other problem

s, TEE provides a secure, integrity-protected processing environ-
ent, but the compromised host may bypass the boundary of TEE
ia polluting the aggregation function input. For instance, the host
ay tamper with the function (i.e., program code), or replace it
ith another one (commonly included as replay attacks).
We give the comparison with previous works in Table 1, and
onclude our main contributions as follows.
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To the best of our knowledge, it is the first work to propose
a non-interactive PDA model in the cloud-enabled IoT scenar-
ios, which can compute arbitrary functions and requires no
trusted entities. We introduce a cloud server as an aggregator
equipped with the TEE to provide PDA services. The constant
online communication and low computation cost (data owners)
make sense in reality, especially in constrained environments,
e.g., the IoT environment.
To mitigate the resource limitation, we propose a Privacy-
preserving Function Evaluation (PFE) scheme to compose a
lightweight PDA solution. We exploit the TEEs to facilitate the
PFE and achieve compact key management. PFE guarantees
the security and privacy of sensitive data, and involves mostly
lightweight symmetric operations.
• We avoid uncontrolled functions by employing function autho-

rization and verification approach. Particularly, we design the
Certificate-aided Function Authorization (CFA) mechanism with
the public verifiable certificate management. The data owners
serve as the authority to approve the requested function, which
eliminates privacy leakage caused by unauthorized functions.
The certificates are recorded with the public ledger, where
any tampering with the requested aggregation function can be
detected.
• We present PANDA, a lightweight non-interactive PDA system

based on our model. We prove that PANDA is secure by giving
security definitions and analysis. We also show that PANDA is
practical via both theoretical and experimental evaluation.

1.3. Organization

We show the basic notation and main background knowl-
edge in Section 2. Section 3 gives the system architecture, goals,
and the threat model. We propose PANDA in Section 4, present
ur design of function evaluation and key management in Sec-
ion 5. Section 6 depicts the function authorization and verifi-
ation mechanism. We give the security analysis and evaluation
n Sections 7 and 8, respectively. Finally, Section 9 reviews the
elated work, and we conclude this paper in Section 10.

. Preliminaries

.1. Notation

The frequently used notations are summarized in Table 2.

.2. Authenticated encryption

Authenticated encryption [37] is a particular form of sym-
etric encryption which provides confidentiality and integrity
uarantees simultaneously. An authenticated encryption scheme
E consists of three algorithms: AE.Gen, AE.Enc, and AE.Dec. The
ey generation algorithm AE.Gen takes the security parameter
λ as input and outputs a private key kAE. The encryption al-
orithm AE.Enc takes the key kAE and a message m as input,
hen outputs a ciphertext c. The decryption algorithm AE.Dec
akes kAE and c as input, then outputs the original message

or an error symbol ⊥. AE should provide both correctness
nd security. The correctness means that for all keys kAE and
ll messages m, AE.Dec(kAE,AE.Enc(kAE,m)) = m. We require
E to satisfy the security property as follows. For any Proba-
ilistic Polynomial-Time (PPT) adversary A that is given several
iphertexts of its chosen messages encrypted under a randomly
enerated key kAE (where kAE is invisible to A), A can distin-
uish between two newly generated ciphertexts under kAE with
egligible probability. Furthermore, the advantage is negligible
hat A forges a new valid ciphertext (not included in the ones it
30
Table 2
Notations.
Notation Description

n ∈ N, [n] The number of data owners, the set {1, . . . , n}
Pi,P0 The ith data owner with id IDi(i ∈ [n]), the analyst
CS The cloud server equipped with T EECS
KDC The key distribution center equipped with T EEKDC
PL The public ledger
D, d The plain data family and the bit length of its element
R The result data family
vi vi = {vi,1, . . . , vi,m} is an m-dimensional vector possessed by

Pi , where each item vi,j ∈ D
{vi} The vector set {v1, . . . , vn}
{vi}/vt The vector set {v1, . . . , vt−1, vt+1, . . . , vn}, t ∈ [n]
{ci} The encoded vector set {c1, . . . , cn} for {vi}
{CERTi} The certificate set {CERT1, . . . , CERTn}
F , |F| The aggregation function family, the size of F
f ∈ F An arbitrary aggregation function
W The function whitelist
∥ The symbol of concatenation
λ The security parameter

received) under the same kAE. In this paper, we employ a desired
authenticated encryption scheme AE via generic encrypt-then-
authenticate approach (e.g., used in SSL/TLS [38]), combining a
private-key encryption scheme DE with a message authentication
code scheme MA (details are presented in Section 5).

2.3. Trusted execution environment

A Trusted Execution Environment (TEE) is a secure area of the
processor, isolating from its surrounding environment, which can
defend against threats outside the TEE, e.g., the host machine
attempts to learn the secret information of the program run-
ning in the TEE. There are several TEE instances, including Intel
Software Guard Extensions (SGX) [39], ARM TrustZone [40], and
AMD Secure Encrypted Virtualization (SEV) [41]. In this paper,
we implement TEEs by the Intel SGX, which is a set of processor
extensions to Intel x86. A TEE built by the Intel SGX has three
main functionalities this paper depends on: Isolation, Sealing, and
Attestation. Isolation indicates that the data and code running
inside the TEE cannot be read or modified by any other exter-
nal process. Sealing means that all data transmitted to the host
machine are sealed with a secret key embedded within the TEE.
Attestation implies that the code, data, metadata, and outputs
of the program within a TEE can be attested by generating an
unforgeable report with a specific signing key and instructions.

2.4. Public ledger

The public ledger was named from the traditional account-
ing system that records transaction information like commodity
names, quantities, and prices. Such record-keeping mechanisms
facilitate general public query, verification, as well as supervision.
In general, most applications currently employ a centralized ar-
chitecture that depends on a central authority to authenticate,
validate, or process transactions, which is at risk of the sin-
gle point of failure problem. A public ledger is decentralized to
avoid the dictatorship of the central authority, and all records
are written in the ledger only when the related parties reach
a consensus. With the enormous popularity of cryptocurrency-
based blockchain systems, which can also be generalized as a
specific type of public ledger, the applications of the public ledger
are favored by academia, business, and industry. All items kept
in the public ledger are given timestamps and signed uniquely,
which can be viewed and verified by any entity involved in this
ledger. The public verifiability property can naturally be used to
mitigate the malicious operations to TEEs (e.g., [42,43]). However,
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vital observation of the public ledger is that the entire state
f the ledger must be exposed for public verification, and the
ublic ledger usually has very limited computing power. In the
ata aggregation scenario, the vast amounts of data burden on
he process, let alone computing via the public ledger. Thus, we
tilize public ledger only to process the validity of the aggre-
ation function (Section 6.4), to avoid inefficient massive data
rocessing.

. System architecture and model

.1. System architecture

As described in Section 1, we are motivated to propose a
on-interactive PDA model for constrained devices in the cloud-
nabled IoT scenarios. Specifically, there are five types of roles
also expressed as entities) in our design: the cloud server CS ,
he analyst P0, the data owners Pi (i ∈ [n]), the key distribution
enter KDC, and the public ledger PL, where both CS and KDC are
quipped with secure TEE T EECS and T EEKDC , respectively. Both

the analyst and the data owners are set as constrained terminals
with limited resources. The relationship between the five kinds
of entities in our system is shown in Fig. 2.

Each data owner Pi holds a private m-dimensional vector
i = (vi,1, . . . , vi,m), it instantly stores the masked versions of
i on the remote cloud server CS to reduce the operation and
torage costs (any number of vectors are allowed actually, here
e assume each data owner has only one vector for convenience).
hen the analyst P0 demands for an aggregation result from

he multi-sourced data held by some data owners, P0 outsources
he complex computation task to the cloud, i.e., computing ag-
regation function f (e.g., SUM, MAX, or VAR), on the masked
ata stored in the database of the CS . The key distribution center
DC is introduced to help the constrained terminals manage the
eys, and the public ledger PL is employed to facilitate the public
erification for function authorization.

emark 1. To accord with the real-life scenarios closely, we set
ive roles as above in this work. In essence, the analyst can be
erged with the cloud server as an aggregator. That is, the cloud
erver is entitled to initiate an aggregation task. Besides, any data
wner can also issue an aggregation request as the analyst, in
ddition to supervising with their data.

.2. Goals

Our design goal is to develop a lightweight PDA system for
onstrained devices with the following properties.

No Trusted Aggregator: We claim that the PDA scheme re-
quires no trusted aggregator because a totally trusted aggre-
gator is challenging to find in practice.
Arbitrary Functions: This PDA system supports arbitrary func-
tions, which means it can compute any function no matter
linear or non-linear.
Data-Owner-Specified Functions: The functions should be au-
thorized by data owners before aggregation to prevent leakage
from functions.
No Heavy Overhead: Both the interaction overhead between
entities and the data owners’ computation overhead are low.
In addition, data owners do not need to be online all the time
during the aggregation.
31
Fig. 2. The system architecture.

3.3. Threat model

In this paper, we require the privacy of any data owner should
be protected in the case of the following threats.

• The cloud server may be compromised. It may try to learn more
information beyond the allowed scope of protocols, change its
inputs or outputs, even tamper with the program code outside
the TEE.
• The analyst may be compromised. It can maliciously make an

arbitrary function request, deviate from the protocol, or make
replay attacks.
• The corruption to a minority of entities is acceptable. The

compromised cloud server may collude with the analyst, or
some data owners (the attacker has access to the corrupted
data owners’ plaintexts). Beyond that, the analyst may collude
with any data owner.
• We assume that the key distribution center sets up the system

as instructed initially, and the decentralized public ledger does
not allow the majority collusion.

Remark 2. In this threat model, we only require the key distri-
bution center is initialized securely, which is feasible. After that,
the sensitive operations are confined in the TEE, and no honesty
demands on the key distribution center any longer. In reality, the
assumption that no majority collusion attack for the public ledger
is reasonable, e.g., given the enormous size of the blockchain, a
so-called 51% attack is almost certainly not worth the effort and
likely impossible.

4. PANDA: Practical and Non-interactive Privacy-preserving
Data Aggregation

4.1. Overview

We intend to introduce a cloud server armed with the TEE as
the aggregator to charge in aggregation privately. Specifically, we
propose PANDA, a lightweight non-interactive PDA system in the
cloud-enabled IoT paradigm. PANDA is naturally split into four
phases as Fig. 3: (1) the initialization phase sets the preparation
up, mainly generating the system parameters and keys; (2) in
the vector encoding phase, each data owner encodes and sends
their vectors to the cloud server; (3) in the function authorization
phase, each data owner generates a certificate to authorize the
data-owner-specified function launched by the analyst, and the
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ertificates must be verified before evaluation; (4) in the final
valuation phase, the cloud server evaluates function f on the
ncoded vectors and outputs an aggregation result. Note that
ANDA is designed in the online/offline mode. The first two
hases work offline, and the other two phases usually run online.
or clarity, PANDA is mainly composed of two underlying blocks:
he Privacy-preserving Function Evaluation PFE (Section 5) and the
Certificate-aided Function Authorization CFA (Section 6). PFE is
designed as a lightweight function evaluation scheme to execute
the aggregation in the TEE embedded on the cloud server with
privacy and efficiency. CFA is proposed to avoid privacy leakage
from functions, which is verified in the cloud server’s TEE with
the aid of the public ledger (Section 6.4). Only the functions that
are verified valid via CFA can be executed in PFE. We define
algorithms of non-interactive PDA in Section 4.2 and integrally
depict the PANDA in Section 4.3.

4.2. Non-interactive privacy-preserving data aggregation

Definition 1 (Non-interactive PDA). A non-interactive PDA scheme
Π is a tuple of eight PPT algorithms (GlobalSetup, SubSetup, Hide,
Store, FuncAuth, CertRecd, CertResp, Finalize) that satisfies the
correctness requirement below.

Initialization Phase:

GlobalSetup(1λ, n) → (pp, (ek, dk)): it takes the security pa-
rameter λ, number of data owners n as input, and outputs the
system parameters pp and the encoding key pair (ek, dk). The
public system parameters pp include all inputs to GlobalSetup
algorithm and some other information if needed. This algo-
rithm is run by KDC. All entities receive (ek, pp). Only T EEKDC
holds dk.
SubSetup(pp) → (sk, vk): it takes the system parameters
pp as input, and outputs the signature key pair (sk, vk). This
algorithm is run by Pi (i ∈ [n]) and PL. Each Pi gets (ski, vki)
(i ∈ [n]), PL gets (skn+1, vkn+1).

Vector Encoding Phase:

Hide(ek, vi)→ ci: this algorithm is run by Pi, it takes as input
the encoding key ek, the data vector vi, outputs the encoded
vector ci.
Store(IDi, ci)→ reci,IDi : this algorithm is run by CS , it takes the
data owner id IDi as input, and outputs a record reci,IDi .

Function Authorization Phase:
32
FuncAuth(ski,Wi, f )→ (CERTi, PUSHi)/ ⊥: this algorithm is run
by Pi, it takes as input the signing key ski, the function whitelist
Wi, the requested function f , outputs the certificate CERTi and
a corresponding PUSHi, or ⊥.
CertRecd(PUSHi) → addi: this algorithm is run by PL, it takes
as input the PUSHi, and outputs the address addi that PUSHi
locates.
CertResp(addi) → (COMi ∥ σi): this algorithm is run by PL, it
takes the address addi as input, and outputs the item COMi on
addi, and a proof σi.

Evaluation Phase:

Finalize(COMi ∥ σi, CERTi, {reci}, dk) → f ({vi} ∥ σfinal) / ⊥:
this algorithm is run in T EECS (via CS), it takes as input the
commitment COMi appended with the proof σi, the certificate
CERTi, the encoded record set {reci} and the decoding secret
key dk, outputs the evaluation result f ({vi}) appended with the
proof σfinal, or ⊥.

Correctness. For all λ, n ∈ N, all (pp, (ek, dk)) generated by
lobalSetup(1λ, n), any (ski, vki) generated by Pi (i ∈ [n+ 1], PL
efers to Pi+1), any data space D and vector set vi derived from
, any data owner id IDi, any function family F and any function
∈ F , any function whitelist Wi, if

ci ← Hide(ek, vi),
reci,IDi ← Store(IDi, ci),
(CERTi, PUSHi)← FuncAuth(ski,Wi, f ),
addi ← CertRecd(PUSHi),
(COMi ∥ σi)← CertResp(addi), then

Finalize(COMi ∥ σi, CERTi, {reci}, dk) = f ({vi}) ∥ σfinal.

4.3. PANDA

PANDA combines the PFE scheme and the CFA scheme in a
reasonably lightweight manner. The main procedure of PANDA is
shown in Fig. 3, and a complete description of detailed PANDA is
given in Fig. 4.

For the IoT scenarios, securing huge amounts of data is an
intractable issue. PANDA is a non-interactive PDA system, where
the processing of a huge quantity of data is accomplished in
offline phases. The initialization phase consists of GlobalSetup
and SubSetup, and the vector encoding phase is composed of
ide and Store. In addition, encoding the data involves only
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Fig. 4. A complete description of PANDA.

ightweight symmetric encryption, which is naturally suitable for
onstrained data owners with limited resources. Even though
e employ an asymmetric signature scheme in online phases of
ANDA, it is executed once by each entity for one function. The
omputation consumption is tiny and acceptable compared to the
arge-scaled data. Specifically, the function authorization phase
33
involves only maximum operations for the CS and generating a
certificate by each Pi, which are both efficient. In addition, the
interactions between the analyst P0 and the n data owners Pi
can be executed in parallel. The bandwidth overhead is only the
length of one query with a certificate in each interaction. Thus,
PANDA makes minimal use of consuming operations, and its
performance mainly benefits from the efficiency of the building
blocks (Sections 5 and 6).

PANDA needs the aid of the public ledger serving as a public
erifiable proof so that the privacy is maintained when behavior
isorder is detected. We also introduce the signature scheme Sn

and the commitment Commit (Section 6.4) to solidate PANDA.
o preserve the secret key, a secure channel between T EEKDC
nd T EECS is established after the remote attestation, which is
aturally achieved by Intel SGX. Certainly, PANDA’s performance
s partly due to the TEE, in which masked data are decoded
irectly and then aggregated practically.

. Function evaluation and key management

.1. Technical statement

To obtain the accurate aggregation result while hiding the data
gainst the compromised aggregator, we introduce an aggregator
quipped with a TEE to achieve an efficient PDA. However, the
esource limitation of constrained terminals proves to be the
tumbling block to our tentative plan. To remedy this, we propose
Privacy-preserving Function Evaluation (PFE) scheme to compose
lightweight PDA solution. PFE guarantees the security and in-

egrity of the data, and involves mostly lightweight symmetric
perations.
However, when it comes to the symmetric encryption involv-

ng massive IoT users, how to exchange a secret key becomes an
nevitable issue. It triggers two problems: (1) data aggregation
sually involves a large number of data owners, implying that a
arge number of secret keys must be stored in the TEE, which only
as very limited storage, and a large number of secure channels
re required between data owners and the TEE to transmit the
eys; (2) the TEE executing aggregation tasks is stateless that the
ecret keys will be erased when the processes finish. Thus, we
ntroduce a key distribution center KDC equipped with a secure
EEKDC storing the secret key exclusively. T EEKDC regularly
utputs reports to prove it is working properly, and will not be
estroyed once it is built. We design the PFE with a customized
ey management policy.

.2. Definitions of function evaluation and key management

The Key Management Policy and the Privacy-preserving Function
valuation (PFE) are defined below.

efinition 2 (Key Management Policy). The key pair (ek, dk) is
generated in the T EEKDC , where the public key ek is published
to all parties by the KDC, and the secret key dk is stored locally in
T EEKDC . The dk is transmitted to T EECS via a secure channel, if
and only if the remote attestation report from T EECS is verified
valid by T EEKDC .

Definition 3 (Privacy-preserving Function Evaluation). A Privacy-
reserving Function Evaluation (PFE) scheme is a tuple of five PPT
lgorithms (Setup, CKeyGen, Encoding,
Decoding, Eval) that satisfies the consistency property below.

Setup(1λ) → pp: this setup algorithm is executed once by
KDC to initialize the system. On input a security parameter
1λ, this algorithm outputs the system parameters pp, which is

published in public and received by all entities.
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CKeyGen(pp) → (ek, dk): this encoding key generation algo-
rithm is run in the T EEKDC , on input the system parameters
pp, generates the key pair (ek, dk), where the public key ek
is published via the KDC, the secret key dk is kept locally
in T EEKDC , and transmitted to T EECS when the key manage
policy in Definition 2 is satisfied.
Encoding(ek, vi) → ci: this encoding algorithm is executed by
data owners Pi, on input the public key ek and plain vector
vi, outputs the encoded vector ci that is comprised of the
ciphertext and MAC tag.
Decoding(dk, ci) → vi: this decoding algorithm can be run by
Pi or T EECS , on input the secret key dk and encoded vector ci,
outputs the corresponding plain vector vi.
Eval(dk, f , {ci}) → f ({vi}): this evaluation algorithm is exe-
cuted in the T EECS , on input the secret key dk, the function
f , and the encoded vector set {ci}, then this algorithm outputs
the evaluation result f ({vi}).

Consistency. For all λ ∈ N, any pp generated by Setup(1λ), any
ek, dk) generated by CKeyGen(pp), any value vi ∈ {vi} (i ∈ [n])
nd any function f ∈ F , if Encoding(ek, {vi}) = {ci}, then we
ave Decoding(dk, Encoding(ek, vi)) = vi, and Eval(dk, f , {ci}) =
({vi}).

.3. Our privacy-preserving function evaluation construction

We give an instantiated privacy-preserving function evalua-
ion construction, and refer to this as PFE from here onwards. We
mploy the authentication encryption composing of the message
uthentication code [37] MA = (Mac,Vrfy) and the private-key
ncryption DE = (Enc,Dec) described in Fig. 5.
At this point, there are several findings about PFE. Firstly, the

hallenge of resource limitation has been solved. The symmetric
ncryption computation overhead is affordable for constrained
ata owners. Secondly, the input data are encrypted with au-
hentication encryption, and the output can be protected with
igital signature by T EECS , any modification can be detected
asily. Thirdly, there are no complicated key agreements between
he cloud server and the massive constrained data owners. Based
n Definition 2, we conclude that dk is protected with the direct
nteractions between TEEs. No entity can touch dk from beginning
o end. And only one key needs to be transmitted via a secure
hannel, such that all entities can generate ciphertexts that can
nly be decrypted in the TEE. Finally, the secret key dk can be
ept in T EEKDC properly.

. Certificate-aided function authorization and verification

.1. Certificate-aided function authorization

This section addresses the challenge of uncontrolled functions.
e observe that the information revealed in the aggregation
rocess depends on the choice of functions to some extent. For in-
tance, we assume an analyst retrieved some information via so-
ial engineering that someone Pi is suffering from heart disease.
hen, if the analyst queries on the exact criteria, the patient’s
ata may be revealed if an unauthorized function is executed,
.g., f (x) = x. Different from most previous works, to avoid the
eakage from functions, we build the Certificate-aided Function
uthorization mechanism, such that Pi decides whether functions

an be performed.

34
Fig. 5. A Privacy-preserving function evaluation (PFE) scheme.

6.2. Definitions of certificate-aided function authorization

At first, we define the data-owner-specified function as below.

efinition 4 (Data-Owner-Specified Function). Let F be a function
amily. For any f ∈ F , a certificate CERTi is generated to authorize
f if f ∈ Wi, where Wi = {fi,1, . . . , fi,si} is called a function whitelist
of Pi, fi,u ∈ F , si ≤ |F|, si ∈ N, and u ∈ [si]. The functions in Wi
re called data-owner-specified functions.

Note that each data owner periodically updates its whitelist
olicy. f ∈ Wi means there exist an fi,u ∈ Wi where fi,u = f , i.e., f
s ‘‘data-owner-specified’’. Then, the Certificate-aided Function Au-
horization mechanism is constructed in Definition 5, which is
ointly performed by data owners and the aggregator (actually,
he T EECS ) before the function evaluation.

efinition 5 (Certificate-aided Function Authorization). A Certif-
cate-aided Function Authorization (CFA) scheme is a tuple of four
PT algorithms (Setup, SKeyGen, CertGen, CertVrfy) that satisfies
he consistency property below.

Setup(1λ)→ pp: this trusted setup algorithm is executed once
by KDC to initialize the system. On input a security parameter
1λ, it outputs the system parameters pp, which is published to
all other parties.
SKeyGen(pp) → (ski, vki): this signature key generation al-
gorithm is executed by data owners P , on input the system
i



M. Wang, K. He, J. Chen et al. Future Generation Computer Systems 131 (2022) 28–42

–

–

(

6

a
h
t

t
o
T
c
p
a
d
d

6

t
t
o
c
p
m
f
b
p
c
m
p
a
c

f
C
t
e
t
p
a
a
o
i
i

R
o
s
d
w
‘
a
n

f

Fig. 6. A Certificate-aided function authorization (CFA) scheme.

parameters pp, output the signature key pair (ski, vki), where
the signing key ski is kept secret to sign the certificate, and the
verifying key vki is published in public.
CertGen(ski,Wi, f ) → CERTi/ ⊥: this certificate generation
algorithm is executed by data owners, on input the signing
key ski, the function whitelist Wi, and the aggregation func-
tion f from the analyst. If f is a data-owner-specified func-
tion, a certificate CERTi including a signature is generated and
transmitted to the analyst, and recorded in a sound manner
simultaneously; otherwise outputs ⊥.
CertVrfy(vki, CERTi, f )→ 1/0: this certificate verification algo-
rithm is run in the T EECS , on input the verifying key vki, the
certificate CERTi, and the function f , outputs 1 if f ∈ CERTi hold
and the signature of CERTi is valid; otherwise this algorithm
outputs 0.

Consistency. For all λ ∈ N, any pp generated by Setup(1λ), any
ski, vki) generated by SKeyGen(pp), we have 1 ←

CertVrfy(vki, CERTi, f ) if CERTi ← CertGen(ski,Wi, f ).

.3. Our certificate-aided function authorization construction

Similarly, we give an instantiated certificate-aided function
uthorization scheme construction, and refer to this as CFA from
ere onwards. We employ the digital signature Sn = (Sign, Vrfy)
o construct CFA in Fig. 6.

Note that, we arrange the data owner Pi as the authority
o decide whether to generate a valid certificate for function f
r not, and the T EECS runs CertVrfy to verify the certificates.
hat is, only the data-owner-specified functions are allowed to be
omputed on the data in T EECS , and vice versa. This effectively
revents the leakage from the functions that the data owners
uthorized. We only provide a kind of thought for this issue, the
etailed authorization strategy is beyond the scope, which is not
iscussed in this paper.
35
Fig. 7. A Certificate verification protocol CVP.

.4. Public verifiable certificate management

We have considered using authentication encryption to pro-
ect data and a certificate-aided method to authorize the func-
ions. It is easy to see that while the tampering with input or
utput of the TEE and leakage from functions are prevented, a
ompromised host still may tamper with the program (e.g., re-
lace it with an old function, or with an old certificate). To
itigate this, we consider an alternative solution to validate the

unction by combining the TEE with the public ledger (e.g., the
lockchain) to manage the certificates. However, utilizing the
ublic ledger means exposure to all parties involved, which in-
reases the risk of certificate theft. Thus, we introduce a com-
itment scheme Commit in our design. Commit takes the system
arameters pp, a messageM , and random coins r as input, outputs
commitment COM that can be verified via recalculating the

ommitment on the same message and coins.
In particular, when Pi creates a certificate CERTi for function

requested by P0, it also generates a cryptographic commitment
OMi for CERTi and records it in the public ledger. We require that
he public ledger can prevent stored items from being modified or
liminated, and generate a proof (e.g., a signature) to demonstrate
he publication is valid. Any party including a TEE can verify this
roof to guarantee the received items are authentic. We present
n improvised Certificate Verification Protocol CVP in Fig. 7. To
id understanding, we present the random coins ri independent
f the certificate CERTi in CVP. We omit the description of ri
n Section 4.3, because ri can be included in CERTi to guarantee
ts integrity.

emark 3. We model the public ledger as an unforgeable proof
f publication, which has the ability to provide public verifiability,
ignature, and timestamps generation properties. Actually, our
esign is also inspired by real-world decentralized public ledger,
hich can be implemented by realistic ledgers, of which many

‘proof-of-work’’ blockchains provide a weaker unforgeable guar-
ntee. It is exactly expensive to forge a proof of publication. These
otions may provide sufficient security in real-world applications.

Our starting point is to guarantee the function validation. At
irst, the certificate is protected with commitment, which avoids
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Fig. 8. µ-privacy game.

rivacy exposure. Secondly, the public verifiability property of the
ublic ledger provides the integrity of certificate commitment.
inally, the appended signature proves it is from the public ledger,
nd the timestamp property of the public ledger protects it from
he certificate replay attacks. The online computation and com-
unication cost of function validation is tiny compared to the

otal overhead, which applies to the constrained terminals.

. Security

.1. Security model

In Definition 6 we define the µ-privacy property under the
ompromised cloud server that has access to the encoded data
nd the final result. This µ-privacy definition implies that a
ompromised cloud server can infer some information about the
lain data with negligible probability µ(λ).

efinition 6 (µ-privacy). Let {P1, . . . ,Pn} be a set of n data
wners. A non-interactive PDA scheme Π is µ-private if for all
∈ N, and all PPT adversary A in SecGameµ−p

Π,A(1λ, n) (Fig. 8),
here exists a negligible function µ s.t. the advantage of A

dvµ−p
Π,A(λ) := | Pr[b′ = b] −

1
2
| ≤ µ(λ).

emark 4. In the µ-privacy game, A selects the plain messages
or each data owner, which means A is also allowed to collude
ith any data owner. We can conclude that a scheme Π is
ollusion-resistant against the compromised cloud server if Π

chieves µ-privacy.

The analyst is entitled to initialize the function f , implying
hat an unauthorized function (e.g., f (x) = x) can be included
n the query such that the result reveals something sensitive. In
efinition 7 we define the F-hiding property under the malicious
nalyst, which means that a malicious analyst learns nothing
bout the plain data even though he initializes f maliciously.

efinition 7 (F-hiding). Let {P1, . . . ,Pn} be a set of n data
wners. A non-interactive PDA scheme Π is F-hidden if for
ll n ∈ N, all function f ∈ F and all PPT adversary A in
ecGameF−hΠ,A(1λ, n, f ) (Fig. 9), there exists a negligible function
egl s.t. the advantage of A

dvF−hΠ,A(λ) := | Pr[b′ = b] −
1
2
| ≤ negl(λ).

emark 5. In the F-hiding experiment, we let the adversary
decide the challenge function f ∈ F , but what A obtains
 t

36
Fig. 9. F-hiding game.

is only the approximate evaluation result. A also is allowed to
collude with any data owner. We can conclude that a scheme Π

is collusion-resistant against the malicious analyst if this scheme
Π achieves F-hiding security.

7.2. Security analysis

To show PANDA is secure and does not leak any information
except the final result, we need the following theorems.

Theorem 1. If DE is CPA-secure, then PANDA achieves the µ-
privacy property.

Proof Sketch 1. For the compromised cloud server A, it observes
all the encoded items from the n data owners {P1, . . . ,Pn}. A
selects Pt (t ∈ [n]) as the challenge data owner from the n
data owners {P1, . . . ,Pn}, chooses n−1 uniform vector messages
{vi}/vt (i ∈ [n], vi ∈ D), then chooses two random messages
v0t , v1t ∈ D and sends ({vi}/vt , v0t , v1t ) to C. Upon receiving the
query, C chooses vbt where b ∈ {0, 1} and let vt = vbt to
compose a new message set {vi} = {v1, . . . , vn}, then runs the
Encoding(ek, {vi}) algorithm to convert {vi} to the ciphertext set
{ci} where ci = Encoding(ek, vi), then runs Eval(dk, f , {ci}) to
obtain an result f ({vi}), sends {ci} and f ({vi}) to A. As the DE
is CPA-secure, and f is not chosen by the adversary A, so A
cannot distinguish whether b = 0 or b = 1 with non-negligible
probability. Therefore, the advantage of the adversary A is

Advµ−p
PDA,A(λ) := | Pr[b′ = b] −

1
2
| ≤ µ(λ)

here µ(λ) is a negligible function µ of λ. Therefore, we consider
ANDA is secure against the compromised cloud server who only
ttempts to infer private information of data owners without
alicious behaviors.

In PANDA, we combine the TEE with several cryptographic
ools to limit the malicious behaviors of the cloud server. When
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Table 3
Comparison with previous work.
Scheme Communication Computation Storage

Bonawitz et al. [9] Data owner Server Data owner Server Data owner
O(n+m) O(n2

+ nm) O(n2
+ nm) O(n2 m) O(n+m)

Guo–Tian–Cho et al. [4] Data owner Server Data owner Server Data owner
O(m) O(nm) O(nm) O(nm) O(nm)

PANDA
Online O(1) O(2n+ 1) O(1) O(nm+ n+ 1) Server
Offline O(m) O(nm) O(m) 0 O(nm)
p
c

c
p
t
O
a

c
m
i
a
a
c
i

s
i

c
r
t

the compromised cloud server A tries to tamper with the ci-
hertexts, the unforgeability property provided by the message
uthentication code makes the modification detectable. Similarly,
hen the compromised cloud server attempts to tamper with
he function that is included in the certificate, the modification
an also be found easily because: (1) the certificate contains a
ignature created by its data owner; (2) the committed version
s recorded in the public ledger, which means the undetectable
odification requires a mass of computation cost; (3) the public

edger provides a proof (e.g., a digital signature) for the stored
ommitted certificate. So the malicious cloud server can tamper
ith the ciphertext and function with very negligible advantage.
Above all, we can conclude that the malicious cloud server can

nfer nothing from the final output in PANDA.

heorem 2. If each data owner Pi has established a sound whitelist
i, Sn is unforgeable, then PANDA achieves F-hiding property

against the malicious analyst.

Proof Sketch 2. We show the F-hiding property via the game
in Fig. 9 and we assume all the sound whitelists {Wi} are setup
properly in advance. For the compromised analyst A, it learns
nothing about the vectors except the approximate result f ({vi}),
ut can initiate an arbitrary function f ∈ F . As described in
he game, the challenger C runs Setup(1λ) to generate the pub-
ic parameter pp, also runs CKeyGen(pp) and SKeyGen(pp) to
generate keys. Then A chooses Pt (t ∈ [n]) as the challenge
ata owner from the n data owners {Pi} (i ∈ [n]), chooses
query function f ∈ F and submits (f , t) to the challenger
for authentication. C runs CertGen(ski,Wi, f ) to generate the

ertificate set {CERTi} for the data owners who agree to compute
on their data. Then A chooses n − 1 random vector messages

rom the plain data space D as {vi}/vt , and uniformly chooses two
essages v0t and v1t . Finally, A sends (f , t, {CERTi}, {vi}/vt , v0t , v1t )

o C. Upon receiving the messages, C randomly chooses vbt (b ∈
0, 1}) as vt , then encrypts all the messages by running the
ncoding(ek, {vi}) algorithm to obtain the ciphertext set {ci}. We
efine the set D0 as D0 = {c1, . . . , c0t , . . . , cn}, and the set D1
s D1 = {c1, . . . , c1t , . . . , cn}, where the two sets differ on only
ne record. Afterwards, C runs CertVrfy(vki, CERTi, f ) to verify
he validation of the request f and the corresponding certificate
ERTi. If both f and CERTi are proved valid, C runs Eval(dk, f , {ci})
o obtain the output f ({vi}) and sends f ({vi}) to A. Finally, A
utputs a guess b′.
If b = b′ always holds, it means the adversary A can dis-

inguish the two results f (D0) and f (D1) with non-negligible
robability. Since Sn provides unforgeability, the advantage of A
s denoted as

dvF−h
PDA,A(λ) := | Pr[b′ = b] −

1
2
| ≤ negl(λ)

s negligible.

Replay attacks are among the most concerning issues of the
EEs. That is, the malicious analyst may replay old certificates
o the TEE along with new inputs. In PANDA, we put a unique
eference number into every certificate, and store it in the public
37
ledger that generates specific timestamps for the transactions.
Thus, the replay attacks are obviously avoided.

We can conclude that the malicious analyst can infer nothing
from the final output in PANDA.

8. Evaluation

We summarize PANDA’s performance in this section. The
overhead of both data owners and the cloud server can be divided
into online and offline parts. The offline cost involves the initial-
ization and vector encoding phases, and the online cost involves
the authentication and evaluation phases.

8.1. Theoretical analysis

We analyze the communication and computation performance
for each data owner and the cloud server, respectively.

Computation cost of each data owner: O(1) online com-
utation and O(m) offline computation. Each data owner Pi’s
omputation cost can be broken up as (1) selecting si functions
and creating the function whitelist which can be done in advance,
(2) generating the signing-verifying key pair, then encoding the
vector elements, which takes O(m) time and (3) generating and
committing a certificate for each query O(1). Note the first two
items are included as the offline cost, the third item is online cost.

Communication cost of each data owner: O(1) online com-
munication and O(m) offline communication cost. The communi-
cation cost of each data owner can be broken up as (1) sending a
ciphertext of an m-dimensional vector, including a ciphertext of
the secret key,m ciphertexts of DE, andmmessage authentication
codes of MA to the cloud server, which are considered as offline
cost, (2) sending a certificate to the analyst and recording a com-
mitted version in the public ledger cost O(1) which are considered
as online cost.

Computation cost of the cloud server: O(nm+ n+ 1) online
omputation cost. The computation cost of the cloud service
rovider can be divided into (1) verifying the certificates from
he analyst costs O(n), (2) evaluating the nm ciphertexts in total
(nm), (3) signing the result costs O(1). Note both the two items
re online cost.
Communication cost of the cloud server: O(n + 1) online

ommunication and O(nm) offline communication cost. The com-
unication cost of the cloud server can be divided into (1) receiv-

ng the O(m) ciphertexts for n data owners, (2) receiving the query
nd the certificates from the analyst costs O(n+ 1), (3) requiring
nd receiving the proofs and commitments from the public ledger
ost O(n). Note the first item is offline cost and the remaining
tems are online cost.

Storage cost of the cloud service provider: O(nm). The cloud
erver must store the encrypted items for each data owner, which
s O(nm) in total.

We compare our scheme with [4,9] on communication and
omputation cost, because as far as we know, they have the
epresentative performance among the existing solutions. The
heoretical complexity of the two schemes is given in Table 3. In
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ummary, our scheme has more efficient communication perfor-
ance because online consumption is only O(1) for data owners
nd O(2n + 1) for the server. For the computation, our scheme

is also not worse than [4,9], the server undertakes most online
computation O(nm + n + 1) and each data owner performs only
(m) offline operations. For the storage, the server needs O(nm)

storage consumption in our work due to the outsourced setting
where the server has powerful computation and storage capacity
and no need for the data owners’ storage capacity. In contract,
each data owner must store O(n+m) items in [9].

8.2. Experimental evaluation

To measure the performance of PANDA, we implemented a
prototype with the Intel(R) SGX SDK 2.0 in simulation mode
hosting on the server with Ubuntu 18.04.2. The CPU is E5-2630 V3
with 2 processors 2.40 GHz and 2.39 GHz. The memory installed
is 128 GB. We use a desktop as the data owner with AMD Ryzen 7
7100 Eight-Core Processor and 8.00 G RAM. For the key encapsu-
lation mechanism, we used Elliptic-Curve Integrated Encryption
scheme over the NIST P-256 curve. For the encoding scheme, we
used AES-GCM scheme with 128-bit length keys.

In our simulations, we have negligible online communication
for the data owners due to the non-interactive model, and also
excellent offline communication because our symmetric encoding
scheme has very low ciphertext expansion. For the computation,
each data owner only undertakes offline encryption operations,
while almost all the online computation cost comes from the
cloud server that has plenty of computation and storage capacity.

For each data owner, both the online computation and com-
munication costs are negligible because data vectors are out-
sourced to the cloud server in the offline phase. As seen in Figs.
10a and 10b, the offline running time per data owner increases
linearly with the data vector size, and is correlated with the
element length of the data vector, but does not change as the
number of data owners increases (also implied in Table 4). This
38
is because each data owner performs outsourcing respectively
without redundant interactions between them. In Fig. 10c, the
offline running time per data owner increases as the number
of total operations increases to tens of millions, and also is in-
fluenced by the vector element length. In Fig. 10d, each data
owner’s communication cost changes as the number of data own-
ers increases, the online communication cost is tiny, while the
offline communication cost regularly differs as the data vector
size changes.

In the case of the cloud server, online communication and
offline computation costs are close to negligible intuitively. The
Figs. 11a and 11b show that the online running time of the
cloud server increases linearly with the data vector size and
the number of data owners, and also changes significantly as
the vector element length increases (also implied in Table 4).
Fig. 11c shows a similar data distribution with data owners, that
the online running time of the cloud server increases with the
number of total operations, but is slightly slower than the case
of the data owner. Fig. 11d shows that the cloud server’s online
transfer cost is very low, but the online data transmission cost
increases linearly with the number of data owners.

To measure the computation pressure on the constrained
devices, we also use Google Pixel 4 as the constrained data owner
with Qualcomm Technologies, Inc SM8150 (msmnile) 2.84G
Eight-Core Processor, 5.34G RAM and 50.01G storage. For the data
owner side, we implement the encoding scheme with AES-GCM
with 128-bit key by utilizing android.security.keystore library.
The running time (ms) of the data encoding phase for different
terminals is presented in Table 5, where each column shows the
time corresponding to the total encoding operations. We can con-
clude that the running time of Google Pixel 4 also increases with
the number of encoding operations, but has weaker sensitivity
for the element length. The possible reason is the libraries that
we utilize are different. In brief, the cost of the encoding phase
is more stressful for the Google Pixel 4 than the desktop, but still
practical and acceptable enough for resource-limited devices.



M. Wang, K. He, J. Chen et al. Future Generation Computer Systems 131 (2022) 28–42

e
c
n

b
p
g
s
o
p
d
l
t
d
d

Fig. 11. Cloud server running time and data transfer costs.
Table 4
Running time (ms) for data processing. The data vector size is fix to 50k entries with 20-byte entries.
Role n 1 100 200 300 400 500

Data owner Offline 7.58175 8.28175 7.45817 7.81759 7.48317 7.87665
Cloud server Online 256.38 27169.66 53970.30 79292.42 10647.11 134520.072
Table 5
Running time (ms) of data encoding phase for different terminals (data owners).
Element length Data owner 1 10 50 100 500 1000 10,000 100,000 200,000 500,000

20 bytes Desktop 0.01072 0.0144 0.02459 0.02926 0.09254 0.16751 1.51635 14.56354 27.8646 74.3569
Google Pixel 4 2.8 10.9 46.5 94.9 472.9 997.8 11118.2 170165.1 346891.1 851170.9

200 bytes Desktop 0.01187 0.02582 0.08128 0.14474 0.62855 1.24336 12.80814 123.0111 256.875 624.876
Google Pixel 4 3.5 11.5 49.1 96.9 475.4 1006.9 11461.6 17734.2 349141.6 871969.1

2000 bytes Desktop 0.0392 0.2781 1.26832 2.59231 11.25994 25.47169 250.1696 2463.99 4976.98 13596.88
Google Pixel 4 4.0 12.1 50.2 98.9 477.2 1017.9 11595.4.3 181795.8 356749.2 919560.8
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9. Related work

As a promising data process approach, PDA has been studied
xtensively. As illustrated in Fig. 12, most existing PDA schemes
an be divided into two categories: interactive PDA schemes and
on-interactive PDA schemes.
Interactive PDA. Interactive PDA solutions ensure data privacy

y maintaining the data locally. Each data owner continuously
rocesses their data and sends the processed data to the ag-
regator, which cannot retrieve any raw data. Interactive PDA
olutions usually require multiple interactions. To the best of
ur knowledge, the most commonly used interactive PDA ap-
roaches are the federated learning based, the MPC based, and the
istributed differential privacy (DP) based approaches. Federated
earning [20–22] distributes the machine learning process over
o edge devices, where each data owner maintains a private
atabase, and trains a shared global model jointly with other
ata owners. Although data owners only upload the updates of
39
he model trained locally instead of their database, these updates
till may reveal sensitive information [9,13,15]. Bonawitz et al. [9]
roposed a communication-efficient secure aggregation protocol
or high-dimensional data, which allows the server to compute
he sum of data vectors in a federated learning setting. Man-
on [13] designed a privacy-preserving system for the federated
etting, which can guarantee both the data and model privacy.
hamikara et al. [15] designed a distributed perturbation algo-
ithm for privacy preservation of horizontally partitioned data in
ederated learning. [26] is also an obvious solution to achieve the
rivacy goals we are aiming for. The notion of secure multi-party
omputation starts initially from the Garbled Circuit [23] which
olves the millionaires’ problem. Secure multi-party computation
ims to privately compute functions f1(x), f2(x), . . . , fn(x) on n

entities’ inputs x = (x1, x2, . . . , xn). HIE-CHO-BER [16] introduce a
computational protocol for biometric research. In addition, there
are some other representative works [17–19] presented in the
past few years. However, most cryptographic primitives served



M. Wang, K. He, J. Chen et al. Future Generation Computer Systems 131 (2022) 28–42

f
o
h

d
v
t
p
o
p
s
t
c
d
f
t
p
n
p
p
t
s
r

g
i
v
a
b
A
c
a
i
r
t
k
o
T
r
c
a
a
Z
k
p
h
e
c
e
p
S
p
a
n
f
t
s

1

t
i
e
T
i

t
r
C
s
a
a
V

D

c
t

A

R
N
U
N
u

R

or MPC solutions are significantly expensive with a large amount
f interactions among all entities, which is not friendly with a
uge number of data owners or large input sizes.
Distributed differential privacy [44] is also a promising can-

idate technique in achieving PDA. The notion of differential pri-
acy [44] makes it possible to compute a statistical result on mul-
iparty private sets while maintaining privacy. Dwork et al. [44]
resented efficient distributed protocols for generating shares
f random noise, while involving interactions among all multi-
le parties. Rastogi et al. [45] also considered distributed time-
eries data and proposed the first differentially private aggrega-
ion scheme, but there is nothing we can do about the linear
ombinations of multi-source items. Shi et al. [46] designed a
istributed data randomization procedure to guarantee the dif-
erential privacy of the outcome statistic, even when some par-
icipants might be compromised. Cha–Shi–Son [47] combined ap-
lied cryptography and differential privacy techniques to explore
ovel PDA mechanisms that offer provable guarantee of user
rivacy against the untrusted aggregation. These works achieve
rivacy preserving, but they usually appear with the costly cryp-
ographic techniques (e.g., HE). Additionally, interactive PDAs
trongly depend on the reliability of the edge devices, which are
equired to be online all the time.

Non-interactive PDA. Non-interactive PDA solutions aggre-
ate data by sending the data to the aggregator all at once
n a secure way. Each data owner processes the data in ad-
ance and stores the processed data in the aggregator before
ggregation. Non-interactive PDA solutions have no interaction
etween the data owner and the aggregator during aggregation.
s far as we know, the non-interactive PDA research mainly
enters on the HE based, the functional encryption (FE) based,
nd the unique sequence number based approaches. HE [27,28]
s a form of encryption that allows generating an encrypted
esult directly on the ciphertexts, corresponding to the result on
he plain items. Castelluccia et al. [35] proposed a symmetric
ey additively homomorphic encryption to lead the aggregation
perations on ciphertexts, but they assumed a trusted aggregator.
hen Rieffel et al. [32] designed a construction that does not
equire a trusted aggregator, but it consumes high storage and
omputation source against collusion. Li et al. [33] presented
sum aggregation protocol based on [35] without the trusted
ggregator, and studied the privacy-preserving Min computation.
hang et al. [2] utilized XOR HE to securely compute the Min and
th Min values. Burkhalter et al. [34] presented a system that
rovides scalable and real-time analytics over large volumes of
omomorphic ciphertexts. However, these schemes based on HE
ither only focus on specific function or are inefficient due to this
ostly cryptographic primitive. Functional encryption [48], which
nables users to learn a specific function of encrypted data with
rivacy preserved, can also achieve secure non-interactive PDA.
imilarly, it aggregates data privately on ciphertexts, but has poor
erformance in the massive data setting. Zhang–Chen–Zhong [1]
nd Gong et al. [12] utilized the unique sequence number to realize
on-interactive PDAs which support for arbitrary aggregation
unctions. However, their solutions reveal exact distribution of
he data to the aggregator, such leakage cannot be ignored in our
cenarios.

0. Conclusions

To make PDA more applicable to the constrained devices in
he IoT scenario, we presented PANDA, a novel lightweight non-
nteractive PDA scheme in the cloud-enabled IoT paradigm which
nsures that data owners’ inputs are invisible to other entities.
o prevent the compromised aggregator from obtaining sensitive
nformation, we designed the cloud server with trusted hardware
40
Fig. 12. Categories of PDA schemes.

(Intel SGX in our implementation), where an isolated TEE is built
in which sensitive data are manipulated. The data are further pro-
tected by the certificate-aid function authentication mechanism
and the public verifiable ledger. PANDA liberates data owners
from expensive operations and frequent interactions compared to
existing schemes. Both the interaction overhead between entities
and the computation overhead of the data owners are very low,
and the data owners store nothing, which makes it appropriate
for constrained devices. Furthermore, the data owners have no
need to be online all the time during aggregation, and PANDA is
secure against collusion between minority entities.
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