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ABSTRACT
Unmanned aerial vehicles (UAVs) have emerged as a promising

technology to provide low-latency mobile edge computing (MEC)

services. To fully utilize the potential of UAV-assisted MEC in prac-

tice, both technical and economic challenges need to be addressed:

how to optimize UAV trajectory for online task offloading and incen-

tivize the participation of UAVs without compromising the privacy

of user equipment (UE). In this work, we consider unique features

of UAVs, i.e., high mobility as well as limited energy and comput-

ing capacity, and propose a privacy-preserving auction framework,

Ptero, to schedule offloading tasks on the fly and incentivize UAVs’

participation. Specifically, Ptero first decomposes the online task

offloading problem into a series of one-round problems by scaling

the UAV’s energy constraint into the objective. To protect UE’s pri-

vacy, Ptero calculates UAV’s coverage based on subset-anonymity.

At each round, Ptero schedules UAVs greedily, computes remunera-

tion for working UAVs, and processes unserved tasks in the cloud

to maximize the system’s utility (i.e., minimize social cost). Theo-

retical analysis proves that Ptero achieves truthfulness, individual
rationality, computational efficiency, privacy preserving and a non-

trivial competitive ratio. Trace-driven evaluations further verify

that Ptero can reduce the social cost by up to 116% compared with

four state-of-the-art algorithms.
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1 INTRODUCTION
With the development of 5G, computing-intensive applications run-

ning on user equipment (UE), such as online games, VR/AR, [18],

require low latency and high computation power [17]. To support

such applications, mobile edge computing (MEC) which processes

offloading requests from UEs in edge servers at base stations (BSs)

has recently emerged as a new computing paradigm [1, 27]. Unfor-

tunately, the infrastructure-based MEC generates high deployment

cost, and may not work effectively in rural areas without sufficient

infrastructures or urban areas during peak hours/ natural disasters

[5]. In recent years, Unmanned Aerial Vehicle (UAV) has received

extensive attention due to its high mobility and flexible deployment.

UAVs can effectively improve the computing capacity and extend

the coverage of MEC [20]. For example, on July 21, 2021, Mihe town

in China was submerged due to heavy rainfall. In its communica-

tion interruption area, the mobile base station enabled by UAVs

provided a mobile signal coverage of about 50 square kilometers for

five hours. A total of 3572 users were connected, and the maximum

number of users accessing at one time was 648 [19].

To fully realize the potential of UAV-assisted MEC in practice,

both technical and economic challenges need to be addressed. First,
on the technical side, one UAV cannot provide continuous comput-

ing services in a long time because the amount of energy obtained

from one charge is limited [20]. Therefore, it is essential to opti-

mize UAV trajectory to serve dynamic offloading requests from UEs

under the UAVs’ battery capacity constraint. Furthermore, when an

emergency occurs, hundreds of UAVs from different organizations

need to cooperate to support long-term and continuous services.

Collaborative task offloading between UAVs is non-trivial, because

UAVs from different organizations have heterogeneous computing

and energy capacities. For example, In the Henan rescue operation

in July 2021, the DJI emergency rescue alliance mobilized 37 drone

rescue teams, including 255 drones, to provide aerial sensing and

lighting services [6]. Second, on the economic side, UAVs process

offloading tasks with their own cost, e.g., energy and computing

resource consumption [21]. It is difficult to quickly gather enough

voluntary UAVs in an emergency situation at the same time. There-

fore, incentive mechanisms which pay remuneration to working

UAVs are necessary for enabling UAV-assisted MEC. Furthermore,
one UE’s private information (e.g., the location, offloading requests)

infers the UE owner’s hobbies or preferences [26]. This information
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should be hidden from UAVs to prevent the risk of privacy leak-

age [1]. Hence, both technical and economic challenges should be

addressed without compromising the privacy of UEs.

There have been some efforts to solve the above two challenges.

For the technical side, existing studies on UAV-assisted MEC focus

on minimizing the overall UEs’/UAVs’ energy consumption [29] or

the system delay [11]. For the economic side, there are only a few

related studies adopting fixed pricing [5]. However, fixed pricing

cannot capture the changing relationship between the supply from

UAVs and the demand from UEs. Consequently, overpricing and

underpricing routinely occur, jeopardizing the UAV’s profit as well

as the system’s utility. Other related papers are either to maximize

the individual UAV’s profit [21] or long-term average revenue [2]

and fail to optimize the trajectories of UAVs. We will discuss it

in detail in Sec. 2. To the best of our knowledge, none of them

consider the limited capacity of the UAV’s battery in the long term

and protect the UE’s private information.

: UAV 

: UE 

: Battery 

: UAV coverage

: Offload to UAV

: Offload to cloud

: UAV trajectory

y

z

x

: Auction Process

Figure 1: An illustration of UAV-assist offloading.

To overcome the aforementioned challenges, we capture impor-

tant features of UAVs, i.e., mobility as well as limited energy and

computing capacity, and study the online incentive mechanism

design for task offloading with privacy-preserving in UAV-assisted

MEC. In particular, we consider an emergency situation, e.g., sports
event (as shown in Fig. 1), where a base station (BS) needs to hire

UAVs to assist in offloading. We utilize auction technique to incen-

tivize UAVs since it is a natural approach to balance supply and

demand and automatically discover the right price so that BS can

select the most cost-efficient UAVs. We optimize the system’s util-

ity in the long run (i.e., social cost), and decide the trajectories of

UAVs on the fly under UAVs’ battery capacity constraints. Our main

contributions are summarized as follows.

• We formulate the social cost minimization problem of task

offloading in UAV-assistedMEC as an integer linear program-

ming problem, which determines the two types of decisions

(offloaded to UAVs or the remote cloud) under UAVs’ battery

capacity constraints. The problem is NP-hard even in offline

settings. The challenge further escalates when tackling the

online scenario and privacy-preserving.

• We design a privacy-preserving auction framework Ptero.
Ptero first decomposes the online problem into a series of

one-round winner determination problems by scaling the

UAV’s energy constraint into the objective. To protect the

location information of UEs, Ptero next calculates each UAV’s
service scheme based on subset-anonymity. At each round,

Ptero calls 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 to schedule UAVs based on a greedy ap-

proach and process leftover tasks in the cloud to minimize

the total cost. A payment strategy is proposed to calculate

the remuneration for UAVs based on the critical value.

• We apply the primal-dual theory to prove that Ptero achieves
a bounded competitive ratio with a small loss in online

decomposition. We also prove that the one-round auction

𝐴𝑤𝑖𝑛𝑛𝑒𝑟 is 𝛼-approximate. We further prove that Ptero guar-
antees truthfulness, individual rationality, privacy-preserving,

and computational efficiency.

• We evaluate the performance of Ptero based on real-world

traces. Some promising results are observed: i)𝐴𝑤𝑖𝑛𝑛𝑒𝑟 achieves

a low approximation ratio (≈ 1.2), and can reduce the social

cost by up to 12% and 51% compared to Trac [8] and ODSH
[4]; ii) in the online settings, Ptero achieves a small competi-

tive ratio (≈ 1.4) and reduces the social cost by up to 116%,

17.8%, and 4.5% compared with two state-of-art scheduling

strategies [4, 21] and a naive version of Ptero; iii) 𝐴𝑤𝑖𝑛𝑛𝑒𝑟

makes decisions in less than 80ms while Ptero executes the
online scheduling decisions in less than 160s for 45 rounds.

In the rest of the paper, we review related work in Sec. 2. The

auction model for UAV-assisted MEC is introduced in Sec. 3. We

present our online auction framework, Ptero, in Sec. 4 and analyze

its theoretical performance in Sec. ??. Sec. 6 shows the trace-driven
simulation results and Sec. 7 concludes the paper.

2 RELATEDWORK
UAV-assisted MEC. The UAV-assisted task offloading in MEC has

been studied under different objectives. Li et al. [11] consider the
popularity of cached contents in the UAVs to optimize their flight

strategy, aiming to minimize the system service delay. Zhao et al.
[29] focus on the total length of trajectories of UAVs and propose

a multi-agent stochastic game to reach the optimal route. Zhang

et al. [28] propose a game theory based scheme to jointly optimize

the weighted values of time delay and energy consumption. In

[27], UAV energy consumption and service delay are iteratively

optimized by SCA-based algorithms. There is also other literature

focusing on the cover rate of users [20], the number of deployed

UAVs [15], and average throughput [22]. All of these papers focus on

technical challenges and ignore the problem of how to incentivize

the participation of UAVs. In addition, we optimize the trajectory

of UAVs with the information of UEs protected, which is ignored

by all of these papers.

Incentive Mechanisms. Incentive mechanism has been widely

studied through auction [9, 17], game theory [2], and contract

theory [12]. Chen et al. [5] propose an iterative matching algorithm

to maximize UAV’s utility in disaster rescuing. Wang et al. [21]
design a dynamic pricing strategy for UAV profit-maximizing. Ng

et al. [17] use UAV swarms to perform federated learning (FL) tasks,

where UAVs aim to maximize their individual profit. Targeting on

crowdsourcing, Jaimes et al. [9] propose an incentive mechanism

for maximizing the coverage of UAVs with a budget constraint.

In [2], the authors consider a content delivery network cached

by UAVs and try to maximize the average revenue of the content

provider. Lim et al. [12] consider UAVs and model owners in FL and

propose a contract matching algorithm to maximize the owner’s
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profit. However, the above studies mainly focus on maximizing

the profit and ignore the efficiency of the system. Furthermore,

we schedule the trajectories of UAVs online while protecting the

individual location information of UEs.

Privacy-preserving in Offloading. To protect the communica-

tion channels between UAVs and the BS, Xu et al. [25] consider a
dual UAV-assisted MEC system, where the additional UAV acts as a

jammer to suppress the eavesdroppers. To protect the information

of UAVs, Wei et al. [23] propose a differential privacy-based deep
reinforcement learning method in the UAV-assist system. Xu et al.
[24] build a distributed ledger based on blockchain to resist the in-

vasion of the malicious UAV for UAV swarm. To protect the privacy

of offloaded data, Liu et al. [13] develop a secure homomorphic en-

cryption framework for processing private data. In [26], the authors

propose an efficient asynchronous UAV-assisted FL framework to

protect the raw data in training. However, these studies mainly fo-

cus on protecting the offloading process and ignore the protection

of UEs. We optimize trajectories of UAVs, without compromising

the privacy of UEs

3 SYSTEM MODEL
3.1 System Overview
UAV-assisted Offloading Scenario. As shown in Fig. 1, we con-

sider a UAV-assisted MEC system including a number of user equip-

ments (UEs), a base station (BS), and a mobile network of rotary-

wing UAVs. The system involves a time-slotted fashion over T time

slots (a.k.a., rounds). Let X denote the integer set {1, 2, . . . , 𝑋 }. As-
sume there are 𝐾 UEs and 𝑈 UAVs. each slot 𝑡 , there are 𝑀𝑡 UEs

(where𝑀𝑡 < 𝐾) requesting to offload tasks for data processing to

the BS. All tasks must be processed in one slot due to the delay

requirement. In an emergency situation (e.g., sports event, power
failure, natural disaster), the BS may be overloaded by too many

requests and needs to hire UAVs to assist offloading. To incentivize

the UAVs, a procurement auction is applied where the BS acts as the

auctioneer and each UAV submits a series of bids for participation.

With all bids collected in a round, the BS determines and pays the

selected winners, and schedules UAVs to process tasks.

Offloading Requirement. The offloading tasks from UEs come

on the fly. The tasks can be offloaded to UAVs only when these two

conditions are satisfied: i) the UE is connected with a UAV; 2) the

connected UAV has sufficient computation capacity to execute the

task. If some tasks cannot be handled by UAVs, the BS will upload

those tasks to a remote cloud with a higher cost. Let 𝑐 (𝜒) be the
price function of processing 𝜒 units of data in the remote cloud.

UE Privacy-preserving. We assume some UAVs in the swarm

are malicious and curious about individual information of UEs.
1

The UE’s private information (e.g., the location, offloading requests)

infers the UE owner’s hobbies or preferences. Once obtained by

the malicious UAVs, they can send advertisements to UEs or even

threaten the owner‘s safety. Note that the data of UEs can be pro-

tected by other existing methods (e.g, homomorphic encryption),

and it is out of the scope in this paper. We aim to protect the loca-

tion information of UEs so that it is not obtained by the other UAVs

except the scheduled one.

1
To get a more specific user profile, the malicious UAVs would honestly conduct the

auction process.

3.2 Auction Model
Bid Information.We first introduce the bidding language in a tra-

ditional scenario without privacy-preserving for UEs. The privacy-

preserving auction process is discussed in Sec. 4.3. At the beginning

of each round, UAVs receive the current information of UEs from

the BS to compute the feasibility between themselves and UEs. Let

𝑑𝑡𝑚 be the data size that UE 𝑚 wants to offload in slot 𝑡 , 𝐺𝑡
𝑚 be

the current position of UE𝑚 in slot 𝑡 (i.e., 𝐺𝑡
𝑚 = (𝑥𝑡𝑚, 𝑦𝑡𝑚)). 𝐹𝑚𝑎𝑥

𝑢

and 𝑅𝑚𝑎𝑥
𝑢 are the computation capacity and the maximum cover-

age radius of UAV 𝑢 respectively. Each UAV calculates its feasible

service sets and submits up to 𝐽 bids. We use 𝑆
𝑡, 𝑗
𝑢 to represent the

feasible service set that UAV 𝑢 can covers in its 𝑗-th bid at slot 𝑡 .

Each service set is a subset ofM𝑡 . UAV 𝑢’s 𝑗-th bid in round 𝑡 (𝐵
𝑡, 𝑗
𝑢 )

is expressed as 𝐵
𝑡,𝑗
𝑢 = {𝑏𝑡,𝑗𝑢 , 𝑆

𝑡,𝑗
𝑢 ,𝐺

𝑡,𝑗
𝑢 }, where 𝑏𝑡, 𝑗𝑢 is the claimed cost

that UAV 𝑢 serves the UE set 𝑆
𝑡, 𝑗
𝑢 at the location 𝐺

𝑡, 𝑗
𝑢 .

UAV Properties. The capacity of UAV 𝑢’s battery is limited in a

single flight, denoted as 𝐸𝑚𝑎𝑥
𝑢 . When UAV 𝑢 serves set 𝑆

𝑡, 𝑗
𝑢 , there

are three types of energy costs generated at slot 𝑡 : hovering cost,

computation cost, and additional propulsion cost
2
, denoted as 𝐸

ℎ,𝑡
𝑢 ,

𝐸
𝑠,𝑡
𝑢,𝑗

, 𝐸
𝑓 ,𝑡

𝑢,𝑗
respectively. The overall energy cost for UAV 𝑢 to serve

set 𝑆
𝑡, 𝑗
𝑢 at slot 𝑡 is denoted as 𝐸

𝑡, 𝑗
𝑢 . The hovering cost 𝐸

ℎ,𝑡
𝑢 is a

constant for UAV 𝑢 at every slot. The detailed expressions of com-

putation cost and propulsion cost are 𝐸
𝑠,𝑡
𝑢,𝑗

= 𝑝𝑠𝑢
∑
𝑚∈𝑆𝑡,𝑗𝑢

𝑑𝑡𝑚 and

𝐸
𝑓 ,𝑡

𝑢,𝑗
= 𝑝

𝑓
𝑢 ∥𝐺𝑡,𝑗

𝑢 −𝐺𝑡−1
𝑢 ∥, where 𝑝𝑠𝑢 , 𝑝

𝑓
𝑢 , and 𝐺

𝑡−1
𝑢 are the unit energy

cost of computation, propulsion for UAV 𝑢, and the location of UAV

𝑢 at slot 𝑡 − 1 respectively. Meanwhile, the moving speed of UAV

𝑢 is limited. Therefore, the flying distance of UAV 𝑢 between two

adjacent slots is upper bounded by 𝐷𝑚𝑎𝑥
𝑢 .

Decision Variables. After all bids received, the BS determines

the following variables: i) 𝑥
𝑡, 𝑗
𝑢 ∈ {0, 1}, which equals 1 if the BS

accepts UAV 𝑢’s 𝑗-th bid 𝐵
𝑡, 𝑗
𝑢 ; ii)Z𝑡 ⊆ M𝑡 , the set of UEs offloaded

to the remote cloud; iii) 𝑝𝑡𝑢 , the payment to UAV 𝑢.

Auction Preliminaries.We introduce some definitions in the

auction design. Let 𝑣
𝑡, 𝑗
𝑢 denote the true cost for UAV 𝑢 to perform

tasks in set 𝑆
𝑡, 𝑗
𝑢 . The utility of this bid with bidding price 𝑏

𝑡, 𝑗
𝑢 is

𝑝𝑡𝑢 − 𝑣𝑡, 𝑗𝑢 if 𝑥
𝑡, 𝑗
𝑢 = 1, and 0 otherwise. The BS’s utility (𝑢𝐵𝑆 ) equals

−∑
𝑢,𝑗,𝑡 𝑝

𝑡
𝑢𝑥

𝑡,𝑗
𝑢 −∑

𝑡 𝑐 (
∑
𝑚∈Z𝑡

𝑑𝑡𝑚) .
Definition (Truthful Auction). A truthful auction guarantees that

a different bidding price other than the true value 𝑣
𝑡, 𝑗
𝑢 would not

increase the utility, i.e., ∀𝑏𝑡, 𝑗𝑢 ≠ 𝑣
𝑡, 𝑗
𝑢 , 𝑢

𝑡, 𝑗
𝑢 (𝑣𝑡, 𝑗𝑢 ) ≥ 𝑢𝑡, 𝑗𝑢 (𝑏𝑡, 𝑗𝑢 ).

Definition (Individual Rationality). An auction is individual ratio-
nal if each UAV’s utility is non-negative, i.e., 𝑢𝑡, 𝑗𝑢 (𝑏𝑡, 𝑗𝑢 ) ≥ 0.

Definition (Social Welfare, Social Cost). The social welfare equals

UAVs’ utilities plus the BS’s utility. The social welfare is −∑
𝑢,𝑗,𝑡 𝑣

𝑡,𝑗
𝑢

𝑥
𝑡,𝑗
𝑢 − ∑

𝑡 𝑐 (
∑
𝑚∈Z𝑡

𝑑𝑡𝑚) when payment cancel themselves. Maxi-

mizing the social welfare equals to minimizing the social cost∑
𝑢,𝑗,𝑡 𝑣

𝑡,𝑗
𝑢 𝑥

𝑡,𝑗
𝑢 +∑

𝑡 𝑐 (
∑
𝑚∈Z𝑡

𝑑𝑡𝑚) .
In general, UAVs are rational but egocentric. They tend to maxi-

mize their own utilities by lying about their true cost. Maximizing

social welfare and maximizing the BS’s profit are both natural

and interesting research problems in real-world auction design.

2
Hovering is a special condition of propulsion. Additional propulsion cost is denoted

as the extra flying energy cost except hovering cost. We assume that the UAV flies from

𝐺𝑖 to𝐺 𝑗 without any stop and keeps a constant speed in propulsion for simplicity.
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Social welfare maximization prompts the efficiency of the whole

eco-system and everyone has a higher probability to be happy in

the long run. Thus, we target the utilities of the entire system (social

welfare), which needs to elicit truthful bidding from UAVs.

3.3 Social Cost Minimization Problem
Problem Formalization. Under truthful bidding ( 𝑏𝑡, 𝑗𝑢 = 𝑣

𝑡, 𝑗
𝑢 ), the

social cost minimization problem is formulated by the following

integer linear problem (ILP):

minimize

∑
𝑡∈T

∑
𝑢∈U

∑
𝑗∈J

𝑏
𝑡,𝑗
𝑢 𝑥

𝑡,𝑗
𝑢 +

∑
𝑡∈T

𝑐 (
∑

𝑚∈Z𝑡

𝑑𝑡𝑚) (1)

s.t

∑
𝑗∈J

∑
𝑢∈U

∑
𝑚∈𝑆𝑡,𝑗𝑢

𝑥
𝑡,𝑗
𝑢 ≥ 1, ∀𝑡, ∀𝑚 ∈ M𝑡 − Z𝑡 , (1a)

∑
𝑗∈J

𝑥
𝑡,𝑗
𝑢 ≤ 1, ∀𝑢, ∀𝑡, (1b)∑

𝑡∈T

∑
𝑗∈J

(𝐸ℎ,𝑡𝑢 + 𝐸
𝑓 ,𝑡

𝑢,𝑗
𝑥
𝑡,𝑗
𝑢 + 𝐸

𝑠,𝑡
𝑢,𝑗

𝑥
𝑡,𝑗
𝑢 ) ≤ 𝐸𝑚𝑎𝑥

𝑢 , ∀𝑢, (1c)

𝑥
𝑡,𝑗
𝑢 ∈ {0, 1},Z𝑡 ⊆ M𝑡 , ∀𝑢, ∀𝑡, ∀𝑗, ∀𝑚 ∈ M𝑡 . (1d)

Constraint (1a) ensures that all UEs’ requests are served. We

adopt the XOR-bidding strategy in constraint (1b) which specifies

that each UAV wins at most one bid at each round. Constraint (1c)

indicates the energy capacity of each UAV for the whole time span.

Table 1. List of Notations
𝑈 # of UAVs 𝐾 # of user equipments

𝑇 system time-span X integer set {1, 2, . . . , 𝑋 }
𝐽 # of service sets 𝑀𝑡 # of active UEs at slot 𝑡

𝐸𝑚𝑎𝑥
𝑢 battery capacity of UAV 𝑢

𝐷𝑚𝑎𝑥
𝑢 maximum distance between two slots for UAV u

𝑅𝑚𝑎𝑥
𝑢 maximum coverage radius of UAV 𝑢

𝐹𝑚𝑎𝑥
𝑢 computation capacity of the 𝑢

𝑑𝑡𝑚 data size that UE𝑚 wants to offload at slot 𝑡

𝐺𝑡
𝑚 (𝐺𝑡

𝑢 ) horizontal coordinate of UE𝑚 (UAV 𝑢) at slot 𝑡

𝑆
𝑡, 𝑗
𝑢 service set in UAV 𝑢’s 𝑗th bid at slot 𝑡

𝑥
𝑡, 𝑗
𝑢 whether or not accept UAV 𝑢’s 𝑗 ’th bid at slot 𝑡

𝑦
𝑡, 𝑗
𝑢,𝑚 whether to serve UE𝑚 in slot 𝑡 by UAV 𝑢 in set 𝑗

Z𝑡 set of UEs processed in the remote cloud at slot 𝑡

𝑏
𝑡, 𝑗
𝑢 claim cost of UAV 𝑢 to serve tasks in 𝑆

𝑡, 𝑗
𝑢

𝐸
ℎ,𝑡
𝑢 hovering energy of UAV 𝑢 at slot 𝑡

𝐸
𝑠,𝑡
𝑢,𝑗

computation energy of UAV 𝑢’s 𝑗 ’th bid at slot 𝑡

𝐸
𝑓 ,𝑡

𝑢,𝑗
propulsion energy of UAV 𝑢’s 𝑗 ’th bid at slot 𝑡

Challenges. i) Intractability. Even a simplified version of ILP

(1) without constraints (1b), (1c) and variable Z𝑡 is still NP-hard,

which is equivalent to the set cover problem [10]. ii) Online decision-
making. Furthermore, we consider a dynamic offloading scenario.

The BS should schedule UAVs on the fly based on the current UE

demands and their valuations, which are not known as a priori.

Constraint (1c) couples the energy consumption, which is affected

at all time slots. iii) Privacy-preserving. Protecting the location of

UEs is incapable if we permit all UAVs to access information of UEs

from bidding process. An effective mechanism is required to adjust

the bidding process with privacy-preserving. Important notations

are listed in Table. 1 for easy reference.

4 AUCTION DESIGN
4.1 Overview of Auction Designing
Algorithmic Idea. We design an auction framework, 𝑃𝑡𝑒𝑟𝑜 , which

solves ILP (1) with a privacy-preserving approach. 𝑃𝑡𝑒𝑟𝑜 determines

the winning bids and the set of UEs for cloud processing tominimize

the social cost with a bounded competitive ratio. The algorithmic

idea of 𝑃𝑡𝑒𝑟𝑜 is shown in Fig. 2.

ii) Privacy-preserving Pretreatment

iii) One-round WD

MILP(3)

Auction Framework Payment Design

Candidate Set Selection

Subset-anonymity

Approximate Ratio
Truthful

Individual Rational
Competitive Ratio

Subroutinei) DecomposeILP(1) ILP(2)

Figure 2: Main idea of UAV-assisted auction 𝑃𝑡𝑒𝑟𝑜 .

i) Problem Decompose. 𝑃𝑡𝑒𝑟𝑜 first decomposes ILP (1) into a

set of one-round winner determination problems (WDP) (2) by

scaling the energy constraints into the objectives by a carefully

designed factor 𝜆𝑡𝑢 . The detailed implementation of problem

decomposition is introduced in Sec. 4.2.

ii) Privacy-preserving Pretreatment. In Sec. 4.3, we show how

to protect the individual information of UEs by subset-anonymity.

We formulate MILP (3) to characterize the matching process

between UAVs and UEs. To solve it, 𝑃𝑡𝑒𝑟𝑜 modifies the bid-

ding process and provides a privacy-preserving pretreatment

algorithm 𝐶𝑎𝑠𝑎 based on reverse matching.

iii) One-round Winner Determination. In Sec. 4.4, we show

how to determine the winners at each time slot 𝑡 efficiently.

We treat the remote cloud as a special case of UAV for ease of

analysis. To solve eachWDP (2), 𝑃𝑡𝑒𝑟𝑜 calls𝐴𝑤𝑖𝑛𝑛𝑒𝑟 based on a

greedy approach to minimize the total cost at each round with

a bounded approximation ratio. The payment is calculated by a

subroutine of𝐴𝑤𝑖𝑛𝑛𝑒𝑟 ,𝐴𝑝𝑎𝑦𝑚𝑒𝑛𝑡 , to guarantee the truthfulness

and individual rationality in the bidding process.

AlgorithmDetails. Wepresent our auction framework 𝑃𝑡𝑒𝑟𝑜 in

Alg. 1. Line 1 first initializes relative variables for decomposing and

winner determination. At time slot t, 𝑃𝑡𝑒𝑟𝑜 executes the following

steps. In Line 4, 𝑃𝑡𝑒𝑟𝑜 calls 𝐶𝑎𝑠𝑎 to find the feasible service sets

(𝑆
𝑡, 𝑗
𝑢 ), service locations (𝐺

𝑡, 𝑗
𝑢 ) for each UAV and the unreachable

UAV set B𝑡 . In Line 6, 𝑃𝑡𝑒𝑟𝑜 computes the propulsion distance for

each service scheme to hide UE’s individual information. In Line 7,

UAVs prepare bid information. More specifically, once receiving the

service sets as well as the propulsion distance from the BS, UAVs

claim their costs including bidding price (𝑏
𝑡, 𝑗
𝑢 ) and additional energy

cost (𝐸
𝑠,𝑡
𝑢,𝑗

+ 𝐸 𝑓 ,𝑡
𝑢,𝑗

). 𝑃𝑡𝑒𝑟𝑜 exams the feasibility of each service set in

the view of battery capacity and form the grand set F 𝑡
, candidate

set C𝑡
, and scale their bidding price according to the 𝜆𝑡𝑢 (which

is related to the remaining battery level, and will be discussed in

Sec. 4.2) in Lines 9-14. The BS decides the winner set (A𝑡
), the

payment (P𝑡
), and cloud processing set (Z𝑡 ) by 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 in Line

15. According to the result returned from 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 , 𝑃𝑡𝑒𝑟𝑜 records
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the best solution which achieves the minimum social cost, and

announces the scheduling decision as well as the payment in Line

18. 𝑃𝑡𝑒𝑟𝑜 updates the time-energy coupled parameter 𝜆𝑡𝑢 in Line

17-24. UEs processed in the cloud are announced in Line 26.

Algorithm 1 UAV-assisted offloading auction framework 𝑃𝑡𝑒𝑟𝑜

Input: 𝐺𝑡
𝑚, 𝑑

𝑡
𝑚,𝐺

𝑡−1
𝑢 ,∀𝑢,𝑚, 𝑡

Output: A𝑡 ,P𝑡 ,Z𝑡∀𝑡
1: Initialize 𝜆𝑡𝑢 = 0, 𝜂𝑢 = 0, C𝑡 = F𝑡 = Z𝑡 = 𝜙, ∀𝑡,𝑢
2: for 1 ≤ 𝑡 ≤ 𝑇 do
3: for 𝑢 ∈ U,𝑚 ∈ M𝑡 do
4: {𝑆𝑡,𝑗𝑢 ,𝐺

𝑡,𝑗
𝑢 , B𝑡 } = 𝐶𝑎𝑠𝑎{𝐺𝑡

𝑚, 𝑑𝑡𝑚,𝐺𝑡−1
𝑢 }

5: for 𝑗 ∈ J do
6: 𝐷

𝑡,𝑗
𝑢 = ∥𝐺𝑡,𝑗

𝑢 −𝐺𝑡−1
𝑢 ∥

7: {𝑏𝑡,𝑗𝑢 , 𝐸
𝑠,𝑡
𝑢,𝑗

+ 𝐸
𝑓 ,𝑡

𝑢,𝑗
} = 𝑏𝑖𝑑𝑝𝑟𝑜𝑐𝑒𝑠𝑠 {𝑆𝑡,𝑗𝑢 , 𝐷

𝑡,𝑗
𝑢 }

8: end for
9: F𝑡 = C𝑡 = ∪𝑢∈U, 𝑗∈J (𝑢, 𝑗)
10: if 𝜂𝑢 + 𝐸

𝑠,𝑡
𝑢,𝑗

+ 𝐸
𝑓 ,𝑡

𝑢,𝑗
> 𝐸𝑚𝑎𝑥

𝑢 −∑
𝑡 𝐸

ℎ,𝑡
𝑢 then

11: 𝑤
𝑡,𝑗
𝑢 = 𝑏

𝑡,𝑗
𝑢 ;C𝑡 = C𝑡 \(𝑢, 𝑗)

12: else
13: 𝑤

𝑡,𝑗
𝑢 = 𝑏

𝑡,𝑗
𝑢 + 𝜆𝑡−1𝑢 (𝐸𝑠,𝑡

𝑢,𝑗
+ 𝐸

𝑓 ,𝑡

𝑢,𝑗
)

14: end if
15: {A𝑡 , P𝑡 ,Z𝑡 } = 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 {𝑤𝑡,𝑗

𝑢 , 𝑆
𝑡,𝑗
𝑢 , F𝑡 , C𝑡 , B𝑡 }

16: end for
17: for (𝑢, 𝑗) ∈ A𝑡 do
18: Accept UAV 𝑢’s 𝑗 ’th bid and schedule 𝑢 according to𝐺𝑡

𝑢 , 𝑆
𝑡
𝑢 ;

Pay 𝑝
𝑡,𝑗
𝑢 ∈ P𝑡

to the UAV 𝑢

19: 𝜆𝑡𝑢 = 𝜆𝑡−1𝑢 (1 +
𝐸
𝑠,𝑡
𝑢,𝑗

+𝐸 𝑓 ,𝑡

𝑢,𝑗

𝛼 (𝐸𝑚𝑎𝑥
𝑢 −∑𝑡 𝐸

ℎ,𝑡
𝑢 )

) +
𝑏
𝑡,𝑗
𝑢 (𝐸𝑠,𝑡

𝑢,𝑗
+𝐸 𝑓 ,𝑡

𝑢,𝑗
)

𝛼 (𝐸𝑚𝑎𝑥
𝑢 −∑𝑡 𝐸

ℎ,𝑡
𝑢 )2

20: 𝜂𝑢 = 𝜂𝑢 + 𝐸
𝑠,𝑡
𝑢,𝑗

+ 𝐸
𝑓 ,𝑡

𝑢,𝑗

21: end for
22: for 𝑢 ∉ A𝑡 do
23: 𝜆𝑡𝑢 = 𝜆𝑡−1𝑢

24: end for
25: for𝑚 ∈ Z𝑡 do
26: offload UE𝑚’s request to the cloud

27: end for
28: 𝜆𝑢 = 𝜆𝑇𝑢 , ∀𝑢
29: end for

return A𝑡 , P𝑡 ,Z𝑡 ∀𝑡

4.2 Problem Decomposition
One-round Problem Formulation. The one-round WDP is de-

fined as follows, which includes the same constraints related to the

current time slot from (1), and excludes the time-coupled constraint

(1c). We boost the cost 𝑏
𝑡, 𝑗
𝑢 into 𝑤

𝑡, 𝑗
𝑢 according to the remaining

battery capacity of each UAV by a well-designed factor 𝜆𝑡𝑢 . Thus,

the constraint (1c) is considered in the objective function as a scaled

cost.

minimize

∑
𝑢∈U

∑
𝑗∈J

𝑤
(𝑡 ), 𝑗
𝑢 𝑥

(𝑡 ), 𝑗
𝑢 + 𝑐 (

∑
𝑚∈Z(𝑡 )

𝑑
(𝑡 )
𝑚 ) (2)

s.t

∑
𝑗∈J

∑
𝑢∈U

∑
𝑚∈𝑆 (𝑡 ), 𝑗

𝑢

𝑥
(𝑡 ), 𝑗
𝑢 ≥ 1, ∀𝑚 ∈ M (𝑡 ) − Z(𝑡 ) , (2a)

∑
𝑗∈J

𝑥
(𝑡 ), 𝑗
𝑢 ≤ 1, ∀𝑢, (2b)

𝑥
(𝑡 ), 𝑗
𝑢 ∈ {0, 1},Z(𝑡 ) ⊆ M (𝑡 ) , ∀𝑢, ∀𝑗, ∀𝑚 ∈ M (𝑡 ) . (2c)

The battery capacity limits the service sets that a UAV can cover

over 𝑇 rounds, leading to a different overall social cost when the

battery is spent at different rounds. The over-consumption of energy

at the early stage may narrow future scheduling decision space. The

BS may be consequently forced to choose service sets from higher

biddings, which further increases the social cost in the whole time

span. The intuition in designing the online auction framework 𝑃𝑡𝑒𝑟𝑜

to achieve lower social cost is to reserve a certain amount of battery

capacity for future demands. Thus, the scaled cost 𝑤
(𝑡 ), 𝑗
𝑢 = 𝑏

(𝑡 ), 𝑗
𝑢 +

𝜆𝑡−1𝑢 (𝐸𝑠,(𝑡 )
𝑢,𝑗

+𝐸 𝑓 ,(𝑡 )
𝑢,𝑗

) increases with the decrease of a UAV’s remaining

battery capacity, reducing its chance to win. The adjustment in Line

19 of 𝑃𝑡𝑒𝑟𝑜 is carefully computed, such that the energy constraint

(1c) is guaranteed over the 𝑇 rounds of online auctions with a

bounded ratio (See Theorem 1 and Theorem 7 for details).

4.3 Auction Process Modification
To protect UE’s information, the auction process is modified.

Definition (Subset-anonymity). Assuming that a set of UEs forms

k subsets. The subset-anonymity ensures that an adversary can

not identify whether a UE is in one exact subset of these k subsets.

That is, the adversary cannot distinguish an individual UE with a

probability higher than 1/k.
Specifically, we adopt the location subset-anonymity based strat-

egy to reformulate the bidding service set, which obscures the

individual location information of UEs in multiple service areas.

The BS calculates the service set 𝑆𝑡, 𝑗𝑢 , and the UAV service location
𝐺
𝑡, 𝑗
𝑢 for UAV u’s serving scheme 𝑗 . Furthermore, The BS only tells

the distance between the service location and the UAV’s location

( ∥𝐺𝑡,𝑗
𝑢 −𝐺𝑡−1

𝑢 ∥). With enough service sets, the location of UEs are

hidden into the service sets. Thus, the UAV cannot infer the loca-

tion of a UE. The request tuple provided to UAV 𝑢 at time 𝑡 by the

BS is expressed as: Γ𝑡𝑢 = {∑
𝑚∈𝑆𝑡,𝑗𝑢

𝑑𝑡𝑚, ∥𝐺𝑡,𝑗
𝑢 −𝐺𝑡−1

𝑢 ∥ }∀𝑗∈J . The UAV

considers its current condition and claims a cost 𝑏
𝑡, 𝑗
𝑢 if it wants to

accept the set Γ
𝑡, 𝑗
𝑢 . After jointly considering information of both

UEs and UAVs, the BS decides the winners of each round.

Pretreatment Formulation. Let B𝑡 denotes the inaccessible

UEs caused by distance limitation in slot 𝑡 (i.e, ∥𝐺 (𝑡−1)
𝑢 −𝐺

(𝑡 )
𝑚 ∥ ≥

𝐷𝑚𝑎𝑥
𝑢 + 𝑅𝑚𝑎𝑥

𝑢 , ∀𝑚 ∈ B𝑡 , ∀𝑢), which is a determined in each round.

The BS calculates the feasible service sets 𝑆
𝑡, 𝑗
𝑢 and the service lo-

cation 𝐺
𝑡, 𝑗
𝑢 for all UAVs in every round. A binary variable 𝑦

𝑡, 𝑗
𝑢,𝑚

equals 1 if UE𝑚’s task is offloaded to UAV 𝑢 by scheme 𝑗 in slot

𝑡 . The privacy-preserving pretreatment problem in each round is

formulated by the following mixed integer linear problem (MILP):

maximize {𝑆 (𝑡 ), 𝑗
𝑢 } (3)

s.t

∑
𝑗∈J

∑
𝑢∈U

𝑦
(𝑡 ), 𝑗
𝑢,𝑚 ≥ 1, ∀𝑚 ∈ M (𝑡 ) − B(𝑡 ) , (3a)∑

𝑚∈𝑆 (𝑡 ), 𝑗
𝑢

𝑦
(𝑡 ), 𝑗
𝑢,𝑚 𝑑

(𝑡 )
𝑚 ≤ 𝐹𝑚𝑎𝑥

𝑢 , ∀𝑢, ∀𝑗, (3b)

∥𝐺 (𝑡 ), 𝑗
𝑢 −𝐺

(𝑡−1)
𝑢 ∥ ≤ ∥𝐷𝑚𝑎𝑥

𝑢 ∥, ∀𝑢, ∀𝑗, (3c)

𝑦
(𝑡 ), 𝑗
𝑢,𝑚 ∥𝐺 (𝑡 ), 𝑗

𝑢 −𝐺
(𝑡 )
𝑚 ∥ ≤ ∥𝑅𝑚𝑎𝑥

𝑢 ∥, ∀𝑢, ∀𝑗, ∀𝑚, (3d)

𝑦
(𝑡 ), 𝑗
𝑢,𝑚 ∈ {0, 1},𝐺 (𝑡 ), 𝑗

𝑢 ∈ R, 𝑆 (𝑡 ), 𝑗
𝑢 = {𝑚 |𝑦 (𝑡 ), 𝑗

𝑢,𝑚 = 1}, ∀𝑢, 𝑗,𝑚. (3e)

Constraint (3a) indicates that all the accessible UEs should be

selected at least once. Constraint (3b) confines the offloading capac-

ity of each service set. The flying distance between two slots for
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UAV 𝑢 and service coverage between UAVs and UEs are specified

in constraints (3c) and (3d) respectively.

Algorithm Idea. To get the feasible solutions of MILP (3), we

design an efficient algorithm𝐶𝑎𝑠𝑎which selects active UEs based on

reverse matching. For each UAV, 𝐶𝑎𝑠𝑎 first finds out accessible UEs
for the UAV and calculates the service area that covers these UEs as

the possible service set. Then, 𝐶𝑎𝑠𝑎 exams the total offloading data

size for each set. If the offloading data size of one set exceeds the

UAV’s computation capacity, 𝐶𝑎𝑠𝑎 merges this set to its neighbor

sets when the capacity constraint is satisfied. Finally, 𝐶𝑎𝑠𝑎 outputs

the candidate sets and points their service location where the flying

distance is the minimum.

Algorithm 2 Candidate Sets Selection Algorithm 𝐶𝑎𝑠𝑎

Input: 𝐺 (𝑡 )
𝑚 , 𝑑

(𝑡 )
𝑚 ,𝐺𝑡−1

𝑢 ,∀𝑢,𝑚
Output: 𝑆 (𝑡 ), 𝑗𝑢 ,𝐺

(𝑡 ), 𝑗
𝑢 ,∀𝑢, 𝑗

1: Initialize 𝑅𝑢 ,M𝑢 = 𝜙, B(𝑡 ) = 𝜙, ∀𝑢
2: for 1 ≤ 𝑢 ≤ U do
3: for 1 ≤𝑚 ≤ M (𝑡 ) do
4: if ∥𝐺 (𝑡−1)

𝑢 −𝐺
(𝑡 )
𝑚 ∥ ≤ 𝐷𝑚𝑎𝑥

𝑢 + 𝑅𝑚𝑎𝑥
𝑢 then

5: 𝑚 → M𝑢

6: 𝑟𝑢𝑚=circle(𝐺 (𝑡 )
𝑚 , 𝑅𝑚𝑎𝑥

𝑢 )

7: end if
8: end for
9: 𝑐𝑖 𝑗=circlecross(𝑟𝑢𝑖 , 𝑟

𝑢
𝑗
)∀𝑖, 𝑗 ∈ M𝑢

10: label served UEs in 𝑐𝑖 𝑗

11: while
∑
𝑚∈𝑐 𝑑

(𝑡 )
𝑚 ≥ 𝐹𝑚𝑎𝑥

𝑢 do
12: roll back the served UEs in this area to its neighbors’

13: end while
14: merge 𝑐𝑖 𝑗 with the same served UEs as 𝑐

15: for qualified 𝑐 do
16: 𝐺

(𝑡 ), 𝑗
𝑢 =mindist(𝑢, 𝑐)

17: if ∥𝐺 (𝑡 ), 𝑗
𝑢 −𝐺

(𝑡−1)
𝑢 ∥ ≤ ∥𝐷𝑚𝑎𝑥

𝑢 ∥ then
18: 𝑆

(𝑡 ), 𝑗
𝑢 ={𝑚 ∈ 𝑐 }

19: end if
20: end for
21: end for
22: B(𝑡 ) = M (𝑡 ) \{𝑚 ∈ 𝑆

(𝑡 ), 𝑗
𝑢 , ∀𝑢, 𝑗 }

return 𝑆
(𝑡 ), 𝑗
𝑢 ,𝐺

(𝑡 ), 𝑗
𝑢 , B(𝑡 ) , ∀𝑢, 𝑗

AlgorithmDetails. The candidate sets selection algorithm𝐶𝑎𝑠𝑎
is presented in Alg. 2. Here,M𝑢 is the accessible UEs for UAV 𝑢. 𝑟𝑢𝑚
is the valid service area if a UAV 𝑢 wants to serve UE𝑚 ∈ M𝑢 . 𝑐𝑖 𝑗
is the combined area that covers UE 𝑖 , 𝑗 or both. For each UAV 𝑢,

Lines 4-7 calculate the valid service area 𝑟𝑢𝑚 for accessible UEs. Lines

9-10 finds the combined area between UEs and label the covered

UEs. Lines 11-13 check the offloading data size for each UE sets in

the combined area, and record the UE sets in the combined area

the same as that of their qualified neighbors. Since an area may

roll back to multiple qualified neighbors, line 14 merges these area

with the same UEs for de-duplication. Lines 15-21 determines the

service set and the service location for each qualified area 𝑐 . Line 17

checks the feasibility of flying distance between the service location

and current location for the UAV. The inaccessible UE set B(𝑡 ) is
calculated in line 22.

Example.We illustrate the process of𝐶𝑎𝑠𝑎 by a simple example

shown in Fig. 3. Suppose there are 3 UEs within UAV’s coverage,

each submits a request (𝑑𝑡𝑚) of 1 unit data. The offloading capacity of

UAV𝑢 is 2 units.𝐶𝑎𝑠𝑎 first circles the valid service area for each UE,

i.e., these three colored circles. 𝐶𝑎𝑠𝑎 then calculates the combined

area with different combination of served UEs, i.e., the 7 numbered

areas. 𝐶𝑎𝑠𝑎 next finds out that the requests in area 7 exceed the

capacity of UAV 𝑢. Area 7 is rolled back to its neighbors whose

service set is just one less than its, i.e., 4, 5, 6. With three feasible

service set choice in 7,𝐶𝑎𝑠𝑎 merges area 7 into its neighbors. After

calculating the minimum distance between these areas, the final

service set is determined as listed in the figure.

C

BA

1

4 5

2
6 3

7

Service Set {A} {B} {C} {A,B} {A,C} {B,C}

Accessible UEs A B C

circlecross

Valid Area 1:{A} 2:{B} 3:{C}

4:{A,C} 5:{B,C} 6:{A,B} 7:{A,B,C}

offloading capacity qualification

Roll Back

Qualified Area 1:{A} 2:{B} 3:{C}

merge area

4+7:{A,C} 5+7:{B,C} 6+7:{A,B}

mindist

Figure 3: An example of 𝐶𝑎𝑠𝑎.

4.4 Winner Determination Algorithm
Problem Reformulation.We mark the remote cloud as a special

case of UAV with the price of introducing the exponential number

of service schemes. We mark the remote cloud as the UAV𝑢0, which

has infinite energy and its service schemes provided in the bidding

process are the combination of all the UEs in current round, i.e.,
|J𝑢0

| = 2
|𝑀(𝑡 ) |

. The additional energy consumption for offloading a

request is 0 so that the bidding price is not scaled. The price of ser-

vice set 𝑆
(𝑡 ), 𝑗
𝑢0

is𝑤
(𝑡 ), 𝑗
𝑢0

= 𝑏
(𝑡 ), 𝑗
𝑢0

= 𝑐 (∑
𝑚∈𝑆 (𝑡 ), 𝑗

𝑢
0

𝑑𝑡𝑚). We reformulate

the problem (2) as the following ILP:

minimize

∑
𝑢∈U

∑
𝑗∈J

𝑤
(𝑡 ), 𝑗
𝑢 𝑥

(𝑡 ), 𝑗
𝑢 (4)

s.t

∑
𝑗∈J

∑
𝑢∈U

∑
𝑚∈𝑆𝑡,𝑗𝑢

𝑥
𝑡,𝑗
𝑢 ≥ 1, ∀𝑚 ∈ M (𝑡 ) , (4a)

∑
𝑗∈J

𝑥
(𝑡 ), 𝑗
𝑢 ≤ 1, ∀𝑢, (4b)

𝑥
(𝑡 ), 𝑗
𝑢 ∈ {0, 1}, ∀𝑢, ∀𝑗 . (4c)

Constraints (4a) and (4b) are similar to constraints (2a) and (2b)

respectively. It is clear that a feasible solution to ILP (4) can be

transferred into the feasible solution to the WDP (2).

Dual Problem. To analyze the performance of 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 , we for-

mulate the dual problem by relaxing the integrality constraint (4c)

into 0 ≤ 𝑥 (𝑡 ), 𝑗𝑢 ≤ 1, and introduce dual variables ℎ
(𝑡 )
𝑚 , 𝑔

(𝑡 )
𝑢 , 𝑘

(𝑡 ), 𝑗
𝑢 to

constraints (4a), (4b), and 𝑥
(𝑡 ), 𝑗
𝑢 ≤ 1, respectively. The dual problem

is formulated as follows:

maximize

∑
𝑚∈M (𝑡 )

ℎ
(𝑡 )
𝑚 −

∑
𝑢∈U

𝑔
(𝑡 )
𝑢 −

∑
𝑢∈U

∑
𝑗∈J

𝑘
(𝑡 ), 𝑗
𝑢 (5)

s.t

∑
𝑚∈𝑆 (𝑡 ), 𝑗

𝑢

ℎ
(𝑡 )
𝑚 − 𝑔

(𝑡 )
𝑢 − 𝑘

(𝑡 ), 𝑗
𝑢 ≤ 𝑤

(𝑡 ), 𝑗
𝑢 , ∀𝑢, ∀𝑗, (5a)
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ℎ
(𝑡 )
𝑚 , 𝑔

(𝑡 )
𝑢 , 𝑘

(𝑡 ), 𝑗
𝑢 ≥ 0, ∀𝑢, ∀𝑗, ∀𝑚 ∈ M (𝑡 ) . (5b)

Algorithm 3 Winner Determination Algorithm 𝐴𝑤𝑖𝑛𝑛𝑒𝑟

Input: {𝑤 (𝑡 ), 𝑗
𝑢 , 𝑆

(𝑡 ), 𝑗
𝑢 }, C (𝑡 ) , F (𝑡 ) ,B(𝑡 ) ,∀𝑢,𝑚

Output: A (𝑡 ) ,P (𝑡 ) ,

1: Initialize A (𝑡 ) = P (𝑡 ) = L (𝑡 ) = 𝜙,Z(𝑡 ) = B(𝑡 ) , 𝑥
(𝑡 ), 𝑗
𝑢 = 0, ℎ

(𝑡 )
𝑚 =

0, 𝑔
(𝑡 )
𝑢 = 0, 𝑘

(𝑡 ), 𝑗
𝑢 = 0, ∀,𝑚, 𝑗,𝑢 in real

2: while𝑈 (A (𝑡 ) ) + |Z(𝑡 ) | < |M (𝑡 ) | do

3: (𝑢∗, 𝑗∗)=argmin(𝑢,𝑗 )∈C (𝑡 )
𝑤

(𝑡 ), 𝑗
𝑢

𝑈𝑢,𝑗 (A (𝑡 ) ) ;

4: 𝜑 (𝑚,𝑆
(𝑡 ), 𝑗∗
𝑢∗ ) =

𝑤
(𝑡 ), 𝑗∗
𝑢∗

𝑈𝑢∗, 𝑗∗ (A (𝑡 ) ) , ∀𝑚 ∈ L (𝑡 )
𝑢∗, 𝑗∗

5: if
∑
𝑚∈L (𝑡 )

𝑢∗, 𝑗∗
𝜑 (𝑚,𝑆

(𝑡 ), 𝑗∗
𝑢∗ ) ≤ Δ𝑐 (∑

𝑚∈L (𝑡 )
𝑢∗, 𝑗∗

𝑑𝑡𝑚) then

6: 𝑥
(𝑡 ), 𝑗∗
𝑢∗ = 1

7: 𝑝
(𝑡 )
𝑢∗ = 𝐴𝑝𝑎𝑦𝑚𝑒𝑛𝑡 (𝐶 (𝑡 ) , (𝑢∗, 𝑗∗),𝑈𝑢,𝑗 (A (𝑡 ) ))

8: else
9: Z(𝑡 ) = Z(𝑡 ) ∪ {𝑚 ∈ L (𝑡 )

𝑢∗, 𝑗∗ }
10: end if

11: (𝑢+, 𝑗+)=argmin(𝑢,𝑗 )∈F (𝑡 )
𝑤

(𝑡 ), 𝑗
𝑢

𝑈𝑢,𝑗 (A (𝑡 ) )

12: 𝜑 (𝑚,𝑆
(𝑡 ), 𝑗+
𝑢+ )

′
=

𝑤
(𝑡 ), 𝑗+
𝑢+

𝑈𝑢+, 𝑗+ (F (𝑡 ) ) , ∀𝑚 ∈ L (𝑡 )
𝑢+, 𝑗+

13: C (𝑡 ) = C (𝑡 ) \(∪𝑗∈J (𝑢∗, 𝑗))
14: F (𝑡 ) = F (𝑡 ) \(𝑢∗, 𝑗∗)
15: P (𝑡 ) = P (𝑡 ) ∪ 𝑝

(𝑡 )
𝑢∗ ;A (𝑡 ) = A (𝑡 ) ∪ (𝑢∗, 𝑗∗)

16: end while
17: 𝑥

(𝑡 ), 𝑗#
𝑢0

= 1, where 𝑗# exactly serves𝑚 ∈ Z(𝑡 )
18: max(𝑚),min(𝑚) =

max,min
𝑆
(𝑡 ), 𝑗
𝑢

{{𝜑 (𝑚,𝑆
(𝑡 ), 𝑗
𝑢 ) } ∪ {𝜑 (𝑚,𝑆

(𝑡 ), 𝑗
𝑢 )′ }}, ∀𝑚, ∀𝑢 in real

19: 𝜖𝑚 =
max(𝑚)
min(𝑚) ;𝜖 = max𝑚∈M 𝜖𝑚

20: 𝑛𝜑 (𝑚) = max
𝑆
(𝑡 ), 𝑗
𝑢

{𝜑 (𝑚,𝑆
(𝑡 ), 𝑗
𝑢 ) }∀𝑢 in real; ℎ

(𝑡 )
𝑚 = 𝑛𝜑 (𝑚)/(𝐻𝑚𝜖)

21: for all 𝑥 (𝑡 ), 𝑗
𝑢 == 1 do

22: 𝑘
(𝑡 ), 𝑗
𝑢 =

∑
𝑚∈L (𝑡 )

𝑢,𝑗

(𝑛𝜑 (𝑚) − 𝜑 (𝑚,𝑆
(𝑡 ), 𝑗
𝑢 ))/(𝐻𝑚𝜖)

23: end for
return A (𝑡 ) , P (𝑡 ) ,Z(𝑡 )

Main Idea. Thewinner determination algorithm𝐴𝑤𝑖𝑛𝑛𝑒𝑟 selects

schedules iteratively based on a greedy strategy to solve the problem

(4). we form Z(𝑡 ) with the selection of other UAVs, and decide

𝑥
(𝑡 ), 𝑗
𝑢0

after the UAV selection. We claim a UE is available if all these
selected UAV service sets do not cover this UE. At each round,

𝐴𝑤𝑖𝑛𝑛𝑒𝑟 selects a UAV with a schedule 𝑗 which can cover available
UEs with the lowest average cost. If the cost is lower than processing
these available UEs in the remote cloud, 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 adds the selected

UAV with its corresponding schedule to the winner set. Otherwise,

these UEs are chosen for the cloud. This process terminates until

all active UEs are served by the winners or the cloud.

Average Cost Let A (𝑡 ) = {(𝑢1, 𝑗1), (𝑢2, 𝑗2), . . . ) } be a subset of

bids submitted at round 𝑡 , where (𝑢1, 𝑗1) is UAV 𝑢1’s 𝑗1’th bidding

scheme, 𝛾𝐴
(𝑡 )

𝑚 =
∑

(𝑢,𝑗 )∈A𝑡
:𝑚∈𝑆 (𝑡 ), 𝑗

𝑢
1 denotes the total number of

candidate UAVs to serve UE𝑚 among all bids inA (𝑡 )
. The utility of

setA (𝑡 )
is the number of UEs that has been served inA (𝑡 )

, defined

as𝑈 (A (𝑡 ) ) = ∑
𝑚∈M𝑡

min (𝛾𝐴(𝑡 )
𝑚 , 1) . The increased number of served

UEs of adding UAV 𝑢’s 𝑗 ’th bid to A (𝑡 )
is:

𝑈𝑢,𝑗 (A (𝑡 ) ) = 𝑈 (A (𝑡 ) ∪ (𝑢, 𝑗)) −𝑈 (A (𝑡 ) )

=
∑

𝑚∈M (𝑡 )

(min (𝛾𝐴
(𝑡 )∪(𝑢,𝑗 )

𝑚 , 1) −min (𝛾𝐴(𝑡 )
𝑚 , 1)) . (6)

The average cost of schedule 𝑗 is 𝜑 (𝑚,𝑆
(𝑡 ), 𝑗
𝑢 ) =

𝑤
(𝑡 ), 𝑗
𝑢

𝑈𝑢,𝑗 (A (𝑡 ) ) . Let

F (𝑡 )
be the grand set of all bids in round 𝑡 , and C (𝑡 )

be the can-

didate set of all valid bids, such that satisfy XOR-bidding (1b) and

UAV battery capacity (1c). At the beginning of 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 , A (𝑡 )
is an

empty set. Let L (𝑡 )
𝑢,𝑗

be the current available UEs in UAV 𝑢’s 𝑗 ’th bid

while selecting bid winners. Then 𝑈𝑖, 𝑗 (A (𝑡 ) ) denotes the number

of available UEs in that bid.

Algorithm Details. The winner determination algorithm is pre-

sented in Alg. 3. Line 1 initializes sets and variables. The while
loop in Line 2-16 iteratively selects UAV bids until all UEs are cov-

ered. Specifically, Line 3-4 determine the possible winning bid with

the lowest average cost at the current iteration and record corre-

sponding average cost 𝜑 (𝑚, 𝑆 (𝑡 ), 𝑗
∗

𝑢∗ ). Line 5 compares the price for

covering the newly added UEs in L (𝑡 )
𝑢∗, 𝑗∗ with the additional cost for

adding them to the cloud set. If the UAV is cheaper, the scheme 𝑗∗

is the winning bid, 𝑥
(𝑡 ), 𝑗∗
𝑢∗ is updated to 1. Line 7 calls 𝐴𝑝𝑎𝑦𝑚𝑒𝑛𝑡 to

calculate the payment of these selected schedules while ensuring

truthful bidding. Line 9 updates the remote cloud service set Z(𝑡 )
if the cloud is cheaper. Line 11-12 compute the winner average cost

𝜑 (𝑚, 𝑆 (𝑡 ), 𝑗
∗

𝑢∗ )′ if we relax the XOR-bidding constraint and energy

restriction to decide the value of dual variables. Line 13 removes

all the biddings from winner 𝑢∗ in the candidate set to satisfy XOR-

bidding rule. Line 14-15 removes the winning bid from grand set

F (𝑡 )
, and adds it to the winner set A (𝑡 )

. Its relative payment is

also added into P (𝑡 )
. After Z(𝑡 ) is decided by the while iterations,

the winner scheme for cloud 𝑢0 is decided in Line 17. Lines 18-20

update the dual variables based on the payment to bound approxi-

mate ratio, where𝐻𝑚 =
∑M
𝑚=1

1

𝑚 is the𝑀th harmonic number. The

for loop in line 21-23 update the dual variable 𝑘
(𝑡 ), 𝑗
𝑢 if the primal

constraint is satisfied. (i.e., 𝑥 (𝑡 ), 𝑗𝑢 = 1).

Payment Design. It is vital to ensure truthful bidding for min-

imizing social welfare. The basic idea of 𝐴𝑝𝑎𝑦𝑚𝑒𝑛𝑡 is to calculate

the payment based on the critical bid, i.e., the schedule that has the
second smallest bidding value.

𝐴𝑝𝑎𝑦𝑚𝑒𝑛𝑡 is presented in Alg. 4. Line 1 finds out the critical bid

(𝑢−, 𝑗−). Line 2 computes the payment for the selected schedule

(𝑢∗, 𝑗∗) according to the critical value rule [16].

Algorithm 4 Payment Algorithm 𝐴𝑝𝑎𝑦𝑚𝑒𝑛𝑡

Input: 𝐶 (𝑡 ) , (𝑢∗, 𝑗∗),𝑈𝑢,𝑗 (A (𝑡 ) )
Output: 𝑝 (𝑡 )

𝑢∗

1: (𝑢−, 𝑗−)=argmin(𝑢,𝑗 )∈C (𝑡 )
:(𝑢,𝑗 )≠(𝑢∗, 𝑗∗ )

𝑤
(𝑡 ), 𝑗
𝑢

𝑈𝑢,𝑗 (A (𝑡 ) )

2: 𝑝
(𝑡 )
𝑢∗ = 𝑈𝑢∗, 𝑗∗ (A (𝑡 ) ) · 𝑤

(𝑡 ), 𝑗−
𝑢−

𝑈𝑢−, 𝑗− (A (𝑡 ) )

return 𝑝
(𝑡 )
𝑢∗
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5 THEORETICAL ANALYSIS
In this section, we analyze the properties of 𝑃𝑡𝑒𝑟𝑜 with its sub-

algorithms𝐶𝑎𝑠𝑎,𝐴𝑤𝑖𝑛𝑛𝑒𝑟 , and𝐴𝑝𝑎𝑦𝑚𝑒𝑛𝑡 . The correctness and time

complexity are analyzed in Sec. 5.1. We prove the truthfulness and

individual rationality of 𝑃𝑡𝑒𝑟𝑜 , 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 , and 𝐴𝑝𝑎𝑦𝑚𝑒𝑛𝑡 in Sec. 5.2.

The privacy preserving of 𝐶𝑎𝑠𝑎 is shown in Sec. 5.3. We prove

the approximate ratio of 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 is 𝛼 in Sec. 5.4. The competitive

ratio of Ptero is proven to be 𝛼
𝛽

𝛽−1 in Sec. 5.5. Due to the space

limitation, the proofs for all Lemmas and Theorems can be found

in the technical report [30].

5.1 Correctness and Time Complexity
Lemma 1. 𝐶𝑎𝑠𝑎 computes a feasible solution to MILP (3) in poly-

nomial time.
Lemma 2. 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 computes a feasible solution to ILP (2), ILP (4)

and its dual (5) in polynomial time.
Theorem 1. 𝑃𝑡𝑒𝑟𝑜 computes a feasible solution to MILP (1) in

polynomial time.

5.2 Truthfulness and Individual Rationality
Theorem 2. 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 is a truthful auction in bidding price.

Theorem 3. 𝑃𝑡𝑒𝑟𝑜 is a truthful auction.

Theorem 4. 𝑃𝑡𝑒𝑟𝑜 achieves individual rationality.

5.3 Privacy Preserving
Theorem 5. The proposed privacy-preserving online auction frame-

work 𝑃𝑡𝑒𝑟𝑜 satisfies subset-anonymity.

Proof: According to Lemma 1, the number of subsets for active

UEs in each round is proven to be 𝑂 (𝑀2). The UAV could only

get the distance and total offloading size of each set from the BS

before the winner determination process, and each UAV could win

at most one bidding. Thus, the adversary cannot identify the exact

location of all the UEs at each round with a probability higher than

1

𝑂 (𝑀2) . As for these inaccessible UEs which are offloaded to the

remote cloud, the BS does not tell their existence to the UAVs, so

that the probability of leaking their exact location is 0. In different

rounds, The UEs move randomly, so that the previous information

is outdated. The adversary could not trace a certain UE due to the

uncertainty of winners in bidding. ⊓⊔

5.4 Approximation Ratio
Definition (Approximation Ratio): The approximation ratio of

𝐴𝑤𝑖𝑛𝑛𝑒𝑟 is the upper bound ratio of the objective value of ILP (2)

returned by 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 to the optimal objective value of (2) achieved

by an optimal algorithm.

Theorem 6. Let p and d be the objective values of problem (4) and
its dual (5) returned by 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 respectively. 𝛼𝑑 ≥ 𝑝 with 𝛼 = 𝐻𝑚𝜖 ,
where𝐻𝑚 =

∑M
𝑚=1

1

𝑚 and 𝜖 is defined in Line 19 of𝐴𝑤𝑖𝑛𝑛𝑒𝑟 .𝐴𝑤𝑖𝑛𝑛𝑒𝑟

is 𝛼-approximate algorithm to problem (2).

5.5 Competitive Ratio
Definition (Competitive Ratio): The competitive ratio is the upper-

bound ratio of the social cost achieved by 𝑃𝑡𝑒𝑟𝑜 to the optimal

objective value of the offline WDP in MILP (1).

Lemma 3. Let Δ𝑃 (𝑡 ) and Δ𝐷 (𝑡 ) represent the incremental increase
of the primal and dual objective values after 𝑡-th round, i.e., Δ𝑃 (𝑡 ) =

𝑃 (𝑡 ) −𝑃 (𝑡−1) ,Δ𝐷 (𝑡 ) = 𝐷 (𝑡 ) −𝐷 (𝑡−1) . For all 𝑡 ∈ T,Δ𝑃 (𝑡 ) ≤ 𝛼
𝛽

𝛽−1Δ𝐷
(𝑡 ) ,

where 𝛽 = min𝑢,𝑗,𝑡
𝐸𝑚𝑎𝑥
𝑢 −∑𝑡 𝐸

ℎ,𝑡
𝑢

𝐸
𝑠,𝑡
𝑢,𝑗

+𝐸 𝑓 ,𝑡

𝑢,𝑗

.

Let 𝑃 (𝑡 ) and 𝐷 (𝑡 )
be the primal and dual objective value in prob-

lem (1) and it dual returned by 𝑃𝑡𝑒𝑟𝑜 after 𝑡-th round. 𝑃𝑇 and𝐷𝑇
are

the final primal and dual value achieved by 𝑃𝑡𝑒𝑟𝑜 . Let 𝑃∗ denotes
the optimal objective value of (1).

Theorem 7. The competitive ratio of 𝑃𝑡𝑒𝑟𝑜 is 𝛼 𝛽

𝛽−1 .

Proof: 𝑃 (0) = 𝐷 (0) = 0, and Δ𝑃 (𝑡 ) ≤ 𝛼
𝛽

𝛽−1Δ𝐷
(𝑡 )
. We obtain 𝑃 (𝑇 ) =∑𝑇

𝑡=0 (𝑃 (𝑡 ) −𝑃 (𝑡−1) ) ≤ 𝛼
𝛽

𝛽−1
∑𝑇

𝑡=0 (𝐷 (𝑡 ) −𝐷 (𝑡−1) ) = 𝛼
𝛽

𝛽−1𝐷
(𝑇 )

. Accord-

ing to LP duality[14], 𝑃∗ ≥ 𝐷 (𝑇 )
. Thus,

𝑃
𝑃∗ ≤ 𝑃𝑇

𝐷𝑇 ≤ 𝛼
𝛽

𝛽−1 . The

competitive ratio of 𝑃𝑡𝑒𝑟𝑜 is 𝛼
𝛽

𝛽−1 . ⊓⊔

6 PERFORMANCE EVALUATION
6.1 Evaluation Setup
Parameter Settings. We consider a UAV-assisted MEC network

with 15 UAVs (U=15) and 55 UEs (K=55), and the percent of active

UEs in each slot (𝑀𝑡 ) is set to 80%. We utilize a recently-published

bike trace [3], which includes GPS coordinates of a million shared

bicycles in Shanghai, China. We select a specific region in 3 km*5

km and assume that a UE is carried by the bike. The length of each

slot is 2 minutes and the entire system lasts for 45 slots (T ). In
each slot, the task size (𝑑𝑡𝑚) of an active UE is set within [5,10]

Mb. The configuration of UAVs is set according to the properties

of DJI Mavic 2 Pro [7]. Specifically, the battery capacity (𝐵𝑚𝑎𝑥
𝑢 ) is

60 Wh. The maximum flying speed is 20 m/s. Since the trace up-

dates coordinates in every 40 seconds, the maximum travel distance

(𝐹𝑚𝑎𝑥
𝑢 ) between slots is 800m. The hovering energy cost (𝐸

ℎ,𝑡
𝑢 ) is 4

kJ in a slot. The additional unit propulsion energy cost (𝑝
𝑓
𝑢 ) is 4 J/m.

The maximum offloading capacity (𝐷𝑚𝑎𝑥
𝑢 ) is 40 Mb/slot, and the

transmit power (𝑝𝑠𝑢 ) is 20 dBm. To stabilize the offloading process,

we limit the radiation radius (𝑅𝑚𝑎𝑥
𝑢 ) to 400 m. Suppose that the

initial coordinates of UAVs are randomly distributed in this square.

The bidding price of offloading a unit size of the data for UAV is

uniformly distributed in [10,16]. Since the remote cloud has large

computation capacity, the price would hardly change dynamically,

we set the price function of the remote cloud to grow linearly with

a unit price of 30.

Benchmark Algorithms: We compare 𝑃𝑡𝑒𝑟𝑜 with 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 to

four benchmark algorithms.

• 𝐴𝑝𝑟𝑖𝑐𝑖𝑛𝑔 [21]: which scales the price according to its overall

expectation of profit in choosing to serve a task or stay still.

For the one-round choosing strategy, we adopt the same as

that in 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 .

• Greedy: a naive algorithm of Ptero that selects winners us-
ing their original bidding price 𝑏

𝑡, 𝑗
𝑢 rather than 𝑤

𝑡, 𝑗
𝑢 . The

unqualified bids are also excluded in the current round. Its

one-round choosing strategy is the same as 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 .

• ODSH [4]: UAVs are scheduled to their nearest service set

for energy saving in each round. If UAVs have no power, they

are excluded in the future rounds. We compare its one-round

performance with 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 and the overall result with Ptero.
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• Trac [8]: a one-round algorithm adopted in location-aware

crowdsourcing without the XOR-bidding constraint. It cal-

culates the effectiveness of a service set based on the total

covered UEs rather than the number of available UEs, and
selects the most effective service sets iteratively.

6.2 Performance of One-round Auction 𝐴𝑤𝑖𝑛𝑛𝑒𝑟

Approximation Ratio. Fig. 4 shows the approximation ratio of

𝐴𝑤𝑖𝑛𝑛𝑒𝑟 , 𝑇𝑟𝑎𝑐 , and 𝑂𝐷𝑆𝐻 under different numbers of UEs. All of

them performwell with the increase of the number of UEs. However,

𝐴𝑤𝑖𝑛𝑛𝑒𝑟 always outperforms the other two, because𝐴𝑤𝑖𝑛𝑛𝑒𝑟 is able

to select more cost-efficient service schemes to cover the UEs.
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Figure 4: Approximate ratio
of 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 , 𝑇𝑟𝑎𝑐 and 𝑂𝐷𝑆𝐻

under different numbers of
UEs.
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Social Cost and Payment. In Fig. 5, we compare the social cost

and payment under different bidding price distributions: UNI (a

uniform distribution with unit cost in [10,16]), NORM (a normal

distribution with the mean unit cost and standard deviation of 13

and 3 respectively), and EXP (an exponential distribution with a

mean cost of 16). When the number of UEs increases, the BS must

hire more UAVs, incurring a higher social cost. The social cost of

the exponential distributions is lower than the other two because it

generates a lower unit price with larger probability. The payment

in these three distributions is always a bit higher than the social

cost as 𝐴𝑝𝑎𝑦𝑚𝑒𝑛𝑡 computes the payment no smaller than its cost.
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Figure 6: Percentage of working UAVs and served UEs under
different numbers of UAVs and UEs.

System Satisfaction and Time Complexity. In fig. 6, we ex-

amine the percentage of working UAVs and served UEs by UAVs

in various conditions. The percentage of working UAVs increases

with more UEs and sharply decreases when more UAVs partici-

pate. The percentage of served UEs is always larger than 60% in

all conditions and changes dynamically. When there are more UEs

distributed in the area, the UAV cannot cover many of them due to

its limited service area, which leads to the decrease in served UEs

and the increase of working UAVs. Fig. 7 illustrates the complexity

of 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 under different input scales. We apply the tic and toc
functions in MATLAB to measure the main body of the program.

We repeat 20 times on a laptop (Intel i7-9750H/16GB RAM) and plot

the average value. The running time of 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 is only 72ms even

with input on a large scale (U=25, M=75). It can be observed that

𝐴𝑤𝑖𝑛𝑛𝑒𝑟 grows linearly with the growing number of UEs and UAVs.

We also plot the running time of the optimal algorithm intlinprog
in MATLAB, which is significantly larger than ours.
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UAVs.

6.3 Performance of Online Auction 𝑃𝑡𝑒𝑟𝑜
Execution Time. Fig. 8 shows the average execution time of Ptero
for 45 slots. The execution time is longer than the sum of 𝐴𝑤𝑖𝑛𝑛𝑒𝑟

plotted in Fig. 7, since Ptero also includes Casa and variable updating
process. The time is still acceptable even when we include 70 UEs

and 25 UAVs in the system. The running time grows linearly with

the increase of the number of UAVs and UEs, which confirms our

time complexity analysis.
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Social Cost.We analyze the accumulation of social cost in the

entire time span of these five algorithms in Fig. 9. All of them grow

near-linear as time goes on.𝑂𝐷𝑆𝐻 performs the worst since it only

considers the shortest path to reserve energy. The gap between

𝑃𝑡𝑒𝑟𝑜 , 𝑔𝑟𝑒𝑒𝑑𝑦, and 𝐴𝑝𝑟𝑖𝑐𝑖𝑛𝑔 start to increase in around slot 30. At

that time, some UAVs may have run out of energy under the sched-

ule of 𝑔𝑟𝑒𝑒𝑑𝑦 and 𝐴𝑝𝑟𝑖𝑐𝑖𝑛𝑔 , leading less number of available UAVs

to schedule. Although the final gap between 𝑔𝑟𝑒𝑒𝑑𝑦 and 𝑃𝑡𝑒𝑟𝑜 is
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around 3%, 𝑃𝑡𝑒𝑟𝑜 has always outperformed in all slots, proofing the

efficiency of decomposition.

Competitive Ratio. Fig. 10 illustrates the competitive ratio of

Ptero, Greedy, 𝐴𝑝𝑟𝑖𝑐𝑖𝑛𝑔 , and ODSH with different numbers of UEs.

All of them perform worse with the increase of UEs. The rank is

the same as that in Fig. 9, where Ptero performs the best in these

four online algorithms. we observed that there is only a small

performance loss in 𝑃𝑡𝑒𝑟𝑜 compared with 𝐴𝑤𝑖𝑛𝑛𝑒𝑟 in Fig. 4, which

confirms the analysis of decomposition loss in Theorem 7.
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Figure 11: 10 UAV traces with
55 UEs in 45 slots.

Figure 12: An example of
𝐶𝑎𝑠𝑎 with 1 UAV and 15 UEs.

Performance of UAVs.We plot the traces of UEs and the trajec-

tory traces of UAVs returned by 𝑃𝑡𝑒𝑟𝑜 in Fig. 11. Specifically, the 55

lighter lines indicate the trace information of UEs and the 10 darker

lines are these UAVs. The UAVs tend to fly to areas where more UEs

are active. Since its coverage is 400m, most of these UEs are served

by UAVs. Most of these UAVs travel around the map instead of

hovering in a certain area, which avoids the local optimum decision

for a single UAV. Fig. 12 shows the result of 𝐶𝑎𝑠𝑎 with 1 UAV and

20 UEs distributed in 100*100 squares. The large orange circle is

the maximum service area for the UAV. These small pink circles

and the orange dots are the coverage area and service location for a

service set. Note that the darker circle in the northeast of the UAV

covers more than one UE with minimum trajectory distance. The

UAV stays still if a UE has been within its service coverage.

7 CONCLUSION
UAV complements MEC by providing flexible and low-latency ser-

vices for UEs in the era of 5G. In this paper, we study online mecha-

nism design for task offloading in UAV-assisted MEC, for scheduling

offloading tasks on the fly and incentivizing UAV’s participation.

A reserve auction framework, Ptero, is proposed, with a goal of

social cost minimization. Different from existing literature, Ptero
determines UAV’s trajectory and UE-UAV association for task of-

floading under battery capacity constraint, while protecting UE’s

information. Through rigorous theoretical analysis, we prove that

Ptero is truthful, individual rational, computational efficient, privacy

preserving and achieves a good competitive ratio. Trace-driven sim-

ulations further show that Ptero outperforms four baselines and has

near-to-optimal performance.
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