
Dynamic Group-Oriented Provable
Data Possession in the Cloud

Kun He , Jing Chen , Quan Yuan, Shouling Ji ,Member, IEEE, Debiao He , and Ruiying Du

Abstract—As an important security property of cloud storage, data integrity has not been sufficiently studied under themulti-writermodel,

where a group of users work on shared files collaboratively and any groupmember can update the data bymodification, insertion, and

deletion operations. Existing works under suchmulti-writermodel would bring large storage cost to the third-party verifiers. Furthermore,

to the best of our knowledge, none of the existing works for shared files supports fully dynamic operations, which implies that users cannot

freely perform the update operations. In this paper, we propose the first public auditing scheme for shared data that supports fully dynamic

operations and achieves constant storage cost for the verifiers. Our scheme, named PRAYS, is boosted by a new paradigm for remote

data integrity checking. To implement the new paradigm, we proposed a specially designed authenticated structure, called blockless

Merkle tree, and a novel cryptographic primitive, called permission-based signature. Extensive evaluation demonstrates that PRAYS is as

efficient as the existing less-functional solutions.Webelieve that PRAYS is an important step towards designing practicalmulti-writer cloud

storage systems.

Index Terms—Provable data possession, blockless Merkle tree, permission-based signature

Ç

1 INTRODUCTION

CLOUD storage, which provides ubiquitous access to
a pool of configurable remote storage resources on-

demand, is an attractive paradigm to both individuals and
enterprises. Along with this convenience, data integrity
becomes a major concern about storage outsourcing, espe-
cially considering platform failures and human errors [1],
[2], [3].

To guarantee data integrity in cloud storage services,
many relevant cryptographic primitives have been pro-
posed [4], [5], [6], [7], [8]. Generally, through assigning a
cryptographic tag to each data block of a file and validating
it, those primitives allow a verifier (i.e., the data owner or a
special third party) to examine remote data integrity

without downloading the whole file, and therefore reduce
the communication cost. However, those primitives are lim-
ited to the single-writer model, where only the data owner
can update the data in the cloud.

On the other hand, as online cooperation develops inten-
sively, the multi-writer model, where shared files could be
updated by a group of users for collaboration, is more pre-
ferred in nowadays cloud platforms (e.g., Dropbox and Sug-
arSync). Protecting data integrity in the multi-writer cloud
storage, i.e., for dynamic shared data, then turns to be an
urgent challenge.

Most existing solutions under themulti-writermodel sim-
ply apply the paradigm for the single-writer model, under
which each data block is signed with a user’s private key.
When a user is revoked, all the data blocks signed by that
user have to be re-signed by an unrevoked user or the cloud
server [9], [10], [11]. Since the number of data blocks is huge
in the cloud (e.g., 1 TB data can have 2:68� 108 data blocks
with each block of size 4 kB), these kinds of methods are inef-
ficient in practice.

Some researchers regarded signers’ identities as private
under the multi-writer model, since they could reveal some
significant information about the signed (even encrypted)
data. Taking the e-Health records outsouring as an example,
once the cloud finds that a patient’s (maybe encrypted)
record is signed by an oncologist, the cloud could infer some
private information about that patient, which may violate
patient rights. Many privacy-preserving solutions have been
proposed to solve this issue [12], [13], [14]. However, cooper-
ative users in those solutions cannot determine by themselves
who updated the files stored in the cloud, which is an impor-
tant function in real-world cloud storage systems (e.g., Drop-
box and SugarSync), called revision history. This means that
in the aforementioned example, a doctor is unable to learn
who made the previous diagnosis by himself/herself. In

� K. He andD. He are with Key Laboratory of Aerospace Information Security
and Trusted Computing, Ministry of Education, School of Cyber Science
and Engineering,Wuhan University,Wuhan 430072, China.
E-mail: milloglobe@gmail.com, hedebiao@163.com.

� J. Chen is with Key Laboratory of Aerospace Information Security and
Trusted Computing, Ministry of Education, School of Cyber Science and
Engineering, Wuhan University, Wuhan 430072, China, the Shenzhen
Institute of Wuhan University, Shenzhen, China, and also with Science
and Technology on Communication Security Laboratory, Chengdu, China.
E-mail: chenjing@whu.edu.cn.

� Q. Yuan is with the Computer School, University of Texas-Permian Basin,
Odessa, TX 79762 USA. E-mail: yuan_q@utpb.edu.

� S. Ji is with the Institute of Cyberspace Research and College of Computer
Science and Technology, Zhejiang University, Hangzhou 310027, China,
and also with the Alibaba-Zhejiang University Joint Institute of Frontier
Technologies, Hangzhou, China. E-mail: sji@zju.edu.cn.

� R. Du is with Key Laboratory of Aerospace Information Security and
Trusted Computing, Ministry of Education, School of Cyber Science and
Engineering, Wuhan University, Wuhan 430072, China, and also with
Collaborative Innovation Center of Geospatial Technology, Wuhan, China.
E-mail: duraying@126.com.

Manuscript received 12 Dec. 2018; revised 3 June 2019; accepted 25 June
2019. Date of publication 2 July 2019; date of current version 13 May 2021.
(Corresponding author: Kun He.)
Digital Object Identifier no. 10.1109/TDSC.2019.2925800

1394 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021

1545-5971 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0003-4268-372X
https://orcid.org/0000-0003-4268-372X
https://orcid.org/0000-0003-4268-372X
https://orcid.org/0000-0003-4268-372X
https://orcid.org/0000-0003-4268-372X
https://orcid.org/0000-0002-2446-7436
https://orcid.org/0000-0002-2446-7436
https://orcid.org/0000-0002-2446-7436
https://orcid.org/0000-0002-2446-7436
https://orcid.org/0000-0002-2446-7436
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

summary, a privacy-preserving integrity checking scheme
under the multi-writer model should achieve anonymity and
offline traceability, simultaneously.

In addition, there are two other shortcomings in existing
multi-writer solutions. The size of verification materials in
those solutions, such as public keys, depends on the number
of users or data blocks, which may result in unaffordable
workload, especially when the data is huge [9], [10], [11],
[12], [13], [14]. That means the verification process only
applies to dedicated servers and not to users’ resource-con-
strained devices, such as smartphones and laptops. On the
other hand, those solutions do not support fully dynamic
operations, which includes unlimited times of modifica-
tions, insertions, and deletions of data blocks. Specifically,
some schemes only supports modifications and deletions,
but not insertions [10], [14].

Based on the above discussions, there still lacks an effi-
cient and privacy-preserving integrity checking scheme
under the multi-writer model, in which a group of users are
enabled to outsource and work on (i.e., read and write)
shared files collaboratively. In practice, a preferred data
integrity checking design is expected to have the following
features (in addition to integrity):

� Fully dynamic operations. This property implies that
group members can freely perform modification,
insertion, and deletion operations.

� Constant auditing metadata. This property implies that
the size of verification materials maintained by veri-
fiers for integrity checking should be independent of
the number of users and the data size.

� Secure user revocation.This property implies that group
members can be efficiently revoked. Further, the sys-
tem should resist the collusion between revoked users
and the cloud, and between revoked users and third
party verifiers.

� Anonymity. This property implies that a writer’s
identity should not be revealed from his/her signa-
ture to the cloud or third party verifiers.

� Traceability. This property implies that users from the
same group can identify who updated the shared
data from the signature, i.e., obtaining the revision
history, without the help from any online entity.

In this paper, we follow the line of provable data posses-
sion [4], [15], and propose a dynamic group-oriented prov-
able data possession scheme, called PRAYS, which holds all

the above-mentioned features. Compared with existing sol-
utions (i.e., generating the tags and then building the struc-
ture), PRAYS is boosted by a new paradigm: building the
structure and then generating the tag. Our main contribu-
tions are summarized as follows.

1) We present a customized authenticated structure,
named blockless Merkle tree. Compared with the tradi-
tional Merkle tree, the proposed structure supports
blockless verification (i.e., to check remote data integ-
ritywithout downloading the challenged data blocks)
through an elaborate process for each data block.

2) We propose a novel cryptographic primitive, named
permission-based signature. Permission-based signa-
ture is the first cryptographic primitive that achieves
both anonymity and offline traceability. Further, this
primitive could also be used independently in other
privacy-preserving applications.

3) We design PRAYS based on the blockless Merkle tree
and the permission-based signature. To the best of
our knowledge, PRAYS is the first provable data pos-
session scheme under the multi-writer model that
supports fully dynamic operations aswell as constant
auditingmetadata.

4) We conduct comprehensive security analysis and
extensive evaluations for the proposed scheme. The
results demonstrate that, compared with existing sol-
utions, PRAYS can perform richer functions (e.g.,
fully dynamic operations) while maintaining reason-
able computation and communication cost.

The rest of this paper is organized as follows. In Section 2,
we describe the models and definitions. We present our
solution, called PRAYS, in Section 3. We conduct the secu-
rity analysis and performance evaluation in Sections 4 and
5, respectively. We review the related work in Section 6,
and we conclude this paper and point out our future work
in Section 7.

2 MODELS AND DEFINITIONS

2.1 System Model

Our setting of interest focuses on the deployment of cloud
storage systems under themulti-writermodel,which consists
of a Cloud Service Provider (CSP), a Third-Party Auditor
(TPA), a group of users, and a manager, as shown in Fig. 1.

CSP offers storage service and TPA provides data audit-
ing service. The manager creates a group of users and man-
ages all the users in the group, i.e., user registration and user
revocation. Note that themanager only acts for usermanage-
ment. Thus, he/she does not have to be online all the time.
Users within a group have equal status, which means that
every user can upload a new file to the cloud, and then other
users can read and update that file. This model has been
adopted inmany other solutions [11], [12].

State Information Synchronization. Most existing integrity
checking schemes for dynamic data (under both the single-
writer and multi-writer models) are stateful [10], [16]; other-
wise, CSP can use outdated data to pass the verification.
Under themulti-writermodel, the situation ismore complex.
That is, the latest state information has to be synchronized
among the TPA and all the users. We highlight that state

Fig. 1. The system model of multi-writer cloud storage.

HE ET AL.: DYNAMIC GROUP-ORIENTED PROVABLE DATA POSSESSION IN THE CLOUD 1395

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

information synchronization is important while orthogonal
to our work. Existing schemes (e.g., [10]) solve this problem
by simply sending the state information to TPA every time
when the data is updated. Then, users can obtain the latest
state information from TPA. However, TPA may be offline
when the data is updated. Therefore, in this paper, we
employ an alternative solution that depends on a trusted
public platform (which is not included in Fig. 1), such as bul-
letin boards or blockchains [17], [18], [19], for publishing and
obtaining the latest state information.

Single-Writer Model versus Multi-Writer Model. In the sin-
gle-writer model, although the data owner (i.e., the one who
uploaded the data) can share his/her data with other users
in the cloud, these users only have read permission. That is,
only the data owner can update his/her data in the cloud. In
the multi-writer model, a group of users are enabled to out-
source and work on shared data collaboratively. Specifically,
a shared data block stored in the cloud could be constantly
read, modified, inserted, and deleted by any groupmember.

2.2 Threat Model

We assume that the manager and (unrevoked) users are
honest as in [10], [14]. We consider a threat model under
which CSP and TPA are honest-but-curious [20], [21].

� CSP may delete a part of the stored data for saving
storage cost and try to cheat users that all the data is
stored faithfully. CSP may be curious about the iden-
tity of the uploader and updater [22], [23], which
implies that CSP tries to extract identities from the
stored data.

� TPA may also be curious about the identities of users
and may try to extract identities in the checking
process.

� Both CSP or TPA may collude with revoked users.

2.3 Definitions

We here present the syntax of dynamic group-oriented
provable data possession. The security definitions are dis-
cussed in Section 4.

Definition 1. A dynamic group-oriented provable data posses-
sion scheme consists of the following seven phases.

� Initialization Phase. This phase is launched by the
manager to initialize the system, which only appears
once during the entire life cycle of the system. With the
input of a security parameter �, the manager obtains a
public-private key pair ðpk; skÞ.

� Registration Phase. This phase is launched by a user to
obtain a user key, which only occurs when a user regis-
ters to the system. With the input of an identity id, the
user receives a user key ukid from the manager.

� Revocation Phase. This phase is launched by the man-
ager to disable a user key, which occurs when a user is
corrupted or leaves the system. With the input of an
identity id and the public-private key pair ðpk; skÞ, the
manager updates the public-private key pair and all the
unrevoked user keys.

� Uploading Phase. This phase is launched by a user to
upload a new file to the cloud. With the input of a file
fdigDi¼1 that consists of D data blocks and a user key
ukid, the user obtains the authenticated structure t and
state information st of the file.

� Reading Phase. This phase is launched by a user to
obtain a data block. With the input of a block index i,
the user key ukid, and the state information st, the user
obtains the data block di and the signer identity.

� Writing Phase. This phase is launched by a user to
update an existing file. With the input of an update
ði; di; opÞ which consists of a block index i, a data block
di, and an operation op, and the user key ukid, the user
updates the file, authenticated structure, and state
information.

� Auditing Phase. This phase is launched by TPA to
decide whether data is faithfully stored on the cloud.
With the input of the public key pk and the state infor-
mation st, TPA outputs a decision with a value 0 or 1.

The correctness of dynamic group-oriented provable data
possession is straightforward. On one hand, TPA always
outputs an acceptance in the auditing phase if CSP is honest.
On the other hand, a user always outputs the correct signer
identity in the reading phase if the authenticated structure
and state information are generated by some honest user.

3 OUR CONSTRUCTION

In this section, we present a PRivacy-preserving Auditing
scheme for dYnamic Shared data, named PRAYS. First, we
give an overview of the design and the challenges in it. Then,
we propose a customized authenticated structure and a novel
cryptographic primitive, respectively. Finally, we describe
the details of PRAYS.

3.1 Overview

Unlike most existing solutions under the single-writer or
multi-writer models (cf. Fig. 2a), data blocks in our scheme
are not signed with a user’s private key. Instead, we design a
new paradigm for remote data integrity checking as shown
in Fig. 2b. First, we design a customized authenticated struc-
ture, called Blockless Merkle Tree (BMT), and build this struc-
ture directly from the data blocks without involving any
private keys. In our design, a TPA that holds the “correct”
root of the blockless Merkle tree can verify whether the

Fig. 2. Overview of the workflows.

1396 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

challenged data blocks have been tampered or are out of
date. Then, to ensure that the root is generated by a legal user
(i.e., to achieve secure user revocation) and to provide both
anonymity and traceability, the root of the tree is signedwith
a user’s private key via a novel cryptographic primitive,
called Permission-Based Signature (PBS). The main notations
used in our construction are summarized in Table 1.

3.2 Design Challenge

In order to achieve blockless verification, existing solutions
(e.g., [24], [25]) employ homomorphic authenticators [6], [26].
Then, constructing an authenticated structure, such asMerkle
tree, from homomorphic tags yields a solution with both
blockless verification and fully dynamic operations (cf. the
paradigm in Fig. 2a). However, this approach is not suitable
for the multi-writer model since every block signed by a
revoked user should be re-signed in the revocation process, as
indicated in [12] and [10]. Therefore, the computation cost is
extremely high in the current paradigm if the number of data
blocks is huge. The first challenge in our design is to construct
an authenticated structure that supports blockless verification
and fully dynamic operationswithout any private keys.

The second challenge is to achieve anonymity and offline
traceability simultaneously as explained in Section 1. We
note that group signatures can solve the anonymity issue [27],
[28]. However, due to the inherent property of group signa-
ture, it cannot solve the traceability problem, unless users
keep contacting with the manager when they read data from
the cloud, which requires extra communication overhead.
Further, this requires the manager to be online all the time,
which is a security bottleneck of the system. One may argue
that this issue can be solved by giving each user the opening
key of group signature. Unfortunately, this trivial solution
(and other solutions that depend on a shared secret key) has
two unacceptable shortcomings. First, it is impossible to
trace the traitors when the opening key is leaked since all
users possess the same one. Second, secure channels need to
be established between the manager and unrevoked users
for redistributing the opening key in the revocation process.

3.3 Blockless Merkle Tree

To tackle the first challenge in Section 3.2 and realize remote
data integrity checking, we propose Blockless Merkle Tree as
a new building block. Compared with existing usages of
Merkle tree which combine with homomorphic authentica-
tors, BMT is designed for blockless verification (where TPA
does not have to download all the challenged blocks) without

any homomorphic authenticator, which makes BMT valuable
for remote data integrity checking (even under the single-
writer model). Since the tree building process requires no pri-
vate key, BMT is especially suitable for the multi-writer
model, i.e., dynamic group-oriented provable data posses-
sions. In addition, the tree itself binds each data block and its
position,1 therefore, the proof can also provide the position
correctness. In summary, remote data integrity can be guaran-
teed with blockless verification through the proposed block-
lessMerkle tree if the verifier possesses the correct root.

3.3.1 Syntax

We here formally introduce the syntax of blockless Merkle
tree. Note that the major difference between prior usages
and our proposal is that the Merkle tree in previous
approaches is built from the tags rather than the file. As a
result, the proving algorithm and proof verification algo-
rithm in BMT are very different from the traditional ones.

Definition 2. A blockless Merkle tree scheme is a 4-tuple ðBuild;
Prove;Verify;UpdateÞ.
� The tree building algorithm BuildðÞ takes as input a

file, and outputs an authenticated structure and a
metadata of the authenticated structure.

� The proving algorithm ProveðÞ takes as input a chal-
lenge, a file, and an authenticated structure, and out-
puts a proof. The proof is blockless if it does not contain
every challenged file blocks.

� The proof verification algorithm VerifyðÞ takes as input
a challenge, a proof, and a metadata, and outputs a deci-
sion about whether the proof is valid.

� The tree update algorithm UpdateðÞ takes as input an
update, a file, an authenticated structure, and a meta-
data, and outputs the updated file, authenticated struc-
ture, and metadata.

The correctness of blockless Merkle tree is straightfor-
ward. Intuitively, it means that the honestly generated proof
should always be valid.

3.3.2 Security Definition

The expected security property of blockless Merkle tree is
integrity, which is defined by the following game between a
challenger and an adversary.

1) The adversary chooses a file according to some dis-
tribution and sends it to the challenger.

2) The challenger runs BMT:Build and sends the
authenticated structure to the adversary.

3) The adversary may ask the challenger to run BMT:
Update with adversary-specified updates for polyno-
mial times.

4) The challenger sends a challenge to the adversary, and
receives a proof from the adversary. We say that the
adversary wins if the challenger accepts the proof, i.e.,
the proof verification algorithmBMT:Verify return 1.

Definition 3 (Integrity). A blockless Merkle tree scheme guar-
antees the integrity if for any probabilistic polynomial time

TABLE 1
Main Notations Used in PRAYS

Notation Description

D The number of data blocks
S The number of segments in a data block
B The number of challenged data blocks
di; di;j The ith data block and its jth segment
ni; n1 The ith node and the root of BMT
ii The index in BMT of the ith leaf node
ðpk; skÞ The public-private key pair
ukid; certid The user key and the corresponding certificate

of identity id

1. This trick has been used in some literatures [25], [29], [30].

HE ET AL.: DYNAMIC GROUP-ORIENTED PROVABLE DATA POSSESSION IN THE CLOUD 1397

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

adversary that wins the game, the challenger can reconstruct
the challenged blocks in polynomial time.

3.3.3 Construction

We now detail a concrete construction of blockless Merkle
tree. Let G be a multiplicative cyclic group of prime order p,
and H : f0; 1g� ! f0; 1g� be a cryptographic hash function.
We assume that the file consists ofD data blocks fdigDi¼1 and
a data block is the basic unit (e.g., 4 kB and 16 kB) when CSP
stores and processes the file. However, a data block is too
large to be handled in Zp. Thus, we divide each data block di
into S segments fdi;jgSj¼1 where di;j 2 Zp. The four Probabilis-

tic Polynomial Time (PPT) algorithms are described below.
The Tree Building Algorithm BMT:BuildðÞ. With the input

of D data blocks fdigDi¼1, this algorithm outputs an authenti-
cated structure and some metadata. The detailed procedure
is as follows.

1) Choose S random generators g1; . . .; gS 2 G.

2) For each data block di, compute ui :¼
QS

j¼1 g
di;j
j .

3) Build a complete binary tree t with D leaf nodes as
shown in Fig. 3, in which each node stores a triple
ni ¼ ði; li; siÞ, where i is the unique index of the node
in the tree, li is the number of leaf nodes that can be
reached from the ith node, and si is a hash value. The
index of root is 1, and the index increases from top to
bottom and from left to right. We explain how to
assign li and si in the following steps.

4) For the ith leaf node whose index in the tree is ii, set
lii :¼ 1 and compute sii :¼ HðuiÞ.

5) For each non-leaf node whose index in the tree is i,
compute li :¼ l2i þ l2iþ1 and si :¼ Hðn2ikn2iþ1Þ, where
n2i ¼ ð2i; l2i; s2iÞ and n2iþ1 ¼ ð2iþ 1; l2iþ1; s2iþ1Þ are ni’s
left child and right child, respectively.

6) Return the authenticated structure ðt; fgjgSj¼1Þ and
the metadata ðn1; fgjgSj¼1Þ.

Comparedwith theMerkle tree, there are twomajor differ-
ences in the construction of BMT. First, instead of di, we use ui

to compute the hash value stored in the leaf node. That is why
our proposal does not need authenticators and tags. This
modification enables blockless verfication and reduces the
communication cost in the integrity checking process. Second,
extra information (i.e., i and li) is embedded in the hash values
which fixes the vulnerability of the traditionalMerkle tree.

Fig. 3 shows an illustration of the tree building algorithm

with D ¼ 4 and S ¼ 3. In this illustration, u1 :¼ g
d1;1
1 g

d1;2
2 g

d1;3
3

and n4 :¼ ð4; 1; Hðu1ÞÞ.
The Proving Algorithm BMT:ProveðÞ. With the input of the

challenge fðib; nbÞgBb¼1 where ib indicates the challenged
index, nb 2 Z�p is a coefficient, and B is the number of

challenged blocks, the data blocks fdigDi¼1, the tree t, and

fgjgSj¼1, this algorithm generates a proof. The detailed proce-
dure is as follows.

1) Compute uib :¼
QS

j¼1 g
dib;j
j and obtain fuibgBb¼1.

2) Compute mj :¼
PB

b¼1 nbdib;j and obtain fmjgSj¼1.
3) Compute the path from the root to the challenged

leaf nodes, and the siblings u of the path.

4) Return the proof$ ¼ ðfmjgSj¼1; u; fðiib ; uibÞgBb¼1Þ.
The first step of the proving algorithm is not necessary in

practice, since uib can be computed in advance. One can
also let the tree building algorithm output fuigDi¼1 and store
ðt; fuigDi¼1Þ as the authenticated structure.

The Proof Verification Algorithm BMT:VerifyðÞ. With the
input of the challenge fðib; nbÞgBb¼1, the proof $, the root n1
of the tree t, and fgjgSj¼1, this algorithm checks whether the
proof is valid. The detailed procedure is as follows.

1) Parse$ as fmjgSj¼1, u, and fðiib ; uibÞgBb¼1.
2) Return 0 if

QS
j¼1 g

mj
j ¼

QB
b¼1 u

nb
ib

does not hold.

3) For each uib , compute siib :¼ HðuibÞ.
4) Reconstruct the root from u and fniib g

B
b¼1 where niib ¼ðiib ; 1; siib Þ. This reconstruction process is similar to

the tree building algorithm. Return 0 if the recon-
structed root is not equal to n1.

5) Return 1 which denotes the proof is valid. That
means, every dib corresponds to the ibth leaf node
and is not tampered ð1 � b � BÞ.

The Tree Update Algorithm BMT:UpdateðÞ. With the input
of the tree t, fgjgSj¼1, and an update which consists of a block
index i, an operation op, and a data block di ¼ fdi;jgSj¼1, this
algorithm updates the data blocks and authenticated struc-
ture according to the operation.2 If the operation is modifi-
cation, the original ith data block will be replaced by di. If
the operation is insertion, di will be inserted in front of the
ith data block. If the operation is deletion, the ith data block
will be removed. The detailed procedure is as follows.

1) Compute ui :¼
QS

j¼1 g
di;j
j and sii :¼ HðuÞ if the opera-

tion is modification or insertion. Skip this step if the
operation is deletion.

2) Migrate the original ith leaf node to the ð2ii þ 1Þth
node if the operation is insertion, and to the bii=2cth
node if the operation is deletion. Skip this step if the
operation is modification. This is the same with the
dynamic operations in other binary trees.

3) Update the affected path via sii and the siblings in t.
4) Return di and the updated path, which can be used

for updating the data blocks, authenticated structure,
and metadata.

The process for updating multiple data blocks at once is
similar. After multiple rounds of updates, the tree needs to
be rebalanced. The rebalance process of BMT is similar to
other balanced trees, which includes rotation and value re-
computation. Note that only the values stored in the affected
nodes need to be recomputed, and the most time-consuming

Fig. 3. An illustration of tree building.

2. To simplify the description, the syntax of the tree update algo-
rithm here is slightly different from the one introduced in previous
section.

1398 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

computation in the rebalancing process is hashing. There-
fore, the rebalance process in BMT is as efficient as in the
other balanced trees.

3.4 Permission-Based Signature

In order to employ BMT in our scheme, the root n1 should be
generated by unrevoked users. That means, n1 needs to be
signed with a legal user’s private key. To tackle the second
challenge in Section 3.2, we propose a novel cryptographic
primitive, called Permission-Based Signature, to preserve ano-
nymity and (offline) traceability, simultaneously. The setting
of permission-based signature is similar to group signature,
under which there is a manager and a group of users. Users
can sign messages on behalf of the group. Unlike group sig-
nature where only the manager can reveal the signer’s iden-
tity, permission-based signature allows every user in the
group to obtain the signer’s identity using a unique revealing
key. Thus, in our system, users in the same group can obtain
the signer’s identity, i.e., revision history, without the help of
an online manager. Furthermore, the proposed scheme sup-
ports revocation and the revoked users cannot collude with
CSP or TPA.

3.4.1 Syntax

Before describing the construction, we first formally intro-
duce the syntax of permission-based signature. Compared
with group signature, a user in permission-based signature
possesses two keys, one is called signing key, and the other is
called revealing key. Either of the two keys can be empty,
which means a user may only have the signing capability or
the revealing capability. Obviously, permission-based signa-
ture implies group signature. To construct a group signature
scheme from permission-based signature, the manager in
PBS simply does not generate any revealing keys for users.
Then, only the manager can obtain the signer’s identity as in
group signature. Nevertheless, it is difficult to construct a
permission-based signature scheme from a group signature
scheme, since it is not obvious how to generate unique
revealing key for each user. In this way, permission-based
signature is a stronger notion.

Definition 4. A (dynamic) permission-based signature scheme is
a 6-tuple ðInit;Gen;Revoke;Sign;Verify;RevealÞ.
� The initialization algorithm InitðÞ takes as input a secu-

rity parameter, and outputs a public-private key pair.
� The key generation algorithm GenðÞ takes as input a

private key and a user identity, and outputs a user key
which consists of a signing key and a revealing key.

� The revocation algorithm RevokeðÞ takes as input a
private key and a user identity, and outputs the
updated public-private key pair and user keys for all
the unrevoked users.

� The signing algorithm SignðÞ takes as input a signing
key and a message, and outputs a signature.

� The signature verification algorithm VerifyðÞ takes as
input a public key, a message, and a signature, and
outputs a decision about whether the signature is valid.

� The revealing algorithm RevealðÞ takes as input a
revealing key and a valid signature, and outputs an
identity.

The correctness of permission-based signature is two-
fold. Roughly speaking, it means that the honestly gener-
ated signature should always be valid, and the revealing
algorithm should always output the signer identity of a
valid signature. For the sake of simplicity, we use user key
rather than signing key and revealing key in the rest of this
paper, which means every user has both of these two keys.

3.4.2 Security Definitions

The security of permission-based signature consists of ano-
nymity and traceability. Note that the fundamental security
property that any signature scheme needs to satisfy is unfor-
geability. In Appendix A, we will show that the traceability
of PBS implies this unforgeability.

The anonymity of PBS is defined by the following game
between a challenger and an adversary.

1) With the security parameter �, the challenger launches
the initialization algorithm PBS:Initð1�Þ to obtain a
public-private key pair ðpk; skÞ, and sends ð1�; pkÞ to
the adversary.

2) The adversary can query the key generation oracle and
the signing oracle for polynomial times. When id is
submitted to the key generation oracle, the challenger
launches the key generation algorithm PBS:Gen
ðsk; idÞ to obtain a user key ukid, and sends ukid to the
adversary. Then, the challenger would launch the rev-
ocation algorithm PBS:Revokeðsk; idÞ immediately.
When ðid�;m�Þ is submitted to the signing oracle, the
challenger first generates a user key ukid� if the user
key does not exist, and launches the signing algorithm
PBS:Signðukid� ;m�Þ to obtain the signature s�. Then
s� is sent to the adversary.

3) The adversary chooses two identities ðid0; id1Þ and a
messagem, and sends ðid0; id1;mÞ to the challenger.

4) The challenger first chooses a random bit k 2 f0; 1g,
and generates a user key ukidk if it does not exist.
Then, m is signed with the user key ukidk , and the
signature is sent to the adversary. Further, the chal-
lenger generates certificates for these two identities
and sends the certificates to the adversary.

5) The adversary outputs a bit k0. We say that the adver-
sary wins if k0 ¼ k.

Definition 5 (Anonymity). A permission-based signature
scheme guarantees the anonymity if for any PPT adversary, the
probability that the adversary wins is negligible greater than 1/2.

The traceability of PBS is defined by the following game
between a challenger and an adversary.

1) With the security parameter �, the challenger launches
the initialization algorithm PBS:Initð1�Þ to obtain a
public-private key pair ðpk; skÞ, and sends ð1�; pkÞ to
the adversary. The challenger also initializes an empty
set I.

2) The adversary can query the key generation oracle and
the signing oracle for polynomial times. When id is
submitted to the key generation oracle, the challenger
launches the key generation algorithm PBS:Genðsk;
idÞ to obtain a user key ukid, and sends ukid to the
adversary. Then, id is added into I. When ðid�;m�Þ is

HE ET AL.: DYNAMIC GROUP-ORIENTED PROVABLE DATA POSSESSION IN THE CLOUD 1399

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

submitted to the signing oracle, the challenger first
generates a user key ukid� if the user key does not exist,
launches the signing algorithm PBS:Signðukid� ;m�Þ to
obtain the signature s�, and then sends s� to the
adversary.

3) The adversary outputs a message-signature pair ðm;
sÞ. We say that the adversary wins if the following
three conditions hold: 1) m is never submitted to the
signing oracle; 2) ðm; sÞ is valid; 3) the returned iden-
tity via the revealing algorithm is not in the set I.

Definition 6 (Traceability). A PBS scheme guarantees the
traceability if for any PPT adversary, the probability that the
adversary wins is negligible.

3.4.3 Construction

We now detail a concrete construction of permission-based
signature. Let G and GT be two multiplicative cyclic groups
of prime order p, and g be a fixed generator of G. Let HG :
f0; 1g� ! G and HZ : f0; 1g� ! Z�p be two cryptographic
hash functions. Our implementation utilizes a bilinear map
e : G� G! GT , which satisfies the following conditions. 1)
Bilinearity: 8u; v 2 G, and 8a; b 2 Z�p, eðua; vbÞ ¼ eðu; vÞab. 2)
Non-degeneracy: eðg; gÞ 6¼ 1GT

. 3) Efficient computation: the
operations on group and the bilinear map are efficiently
computable. The six PPT algorithms of our PBS construction
are described below. Note that instead of directly using the
identity, we generate a certificate for each user, which can be
derived from the signing key. This is because the identity
can be arbitrary strings, while the computation in our con-
struction is for group elements.

The Initialization Algorithm PBS:InitðÞ. With the input
of a security parameter �, this algorithm generates a public-
private key pair ðpk; skÞ. The detailed procedure is as
follows.

1) Choose a group G of prime order p, where p is of �
bits of length.

2) Choose two random generators g; h 2 G.
3) Choose three random elements a;b 2 Z�p and h 2 G,

and compute v :¼ ha, w :¼ h�b, and A :¼ eðh; hÞ.
4) Set the public key pk ¼ ðg; h; v; w;AÞ and the private

key sk ¼ ða; b; hÞ.
The Key Generation Algorithm PBS:GenðÞ. With the input

of a private key sk and a user identity id 2 f0; 1g�, this algo-
rithm produces a user key ukid and a corresponding certifi-
cate certid for that user. The detailed procedure is as follows.

1) Choose a random element xid 2 Z�p, and compute

yid :¼ g
1

aþxid and zid :¼ hHGðidÞb.
2) Compute Cid :¼ eðyid; vÞ.
3) Set the user key ukid ¼ ðxid; yid; zidÞ and the certificate

certid ¼ Cid.
We call ðxid; yidÞ the signing key and zid the revealing key

since ðxid; yidÞ is only used in the signing algorithm while zid
is only used in the revealing algorithm.

The Revocation Algorithm PBS:RevokeðÞ. With the input
of a private key sk and a user identity id, this algorithm
updates the public-private key pair for the system and user
keys for all the unrevoked users. The detailed procedure is
as follows.

1) Extract ðxid; yidÞ from the user key ukid.
2) Choose two random elements b00 2 Z�p and h00 2 G,

and compute b0 :¼ bþ b00 and h0 :¼ hh00.
3) Set the updated private key sk0 ¼ ða;b0; h0Þ.
4) Compute g0 :¼ g

1
aþxid , w0 :¼ h�b

0
, and A0 :¼ eðh0; hÞ.

5) Set the updated public key pk0 ¼ ðg0; h; v; w0; A0Þ.
6) For each unrevoked id�, compute y0id� :¼

ðyid=yid� Þ
1

xid� �xid , z00id� :¼ h00HGðid�Þb
00
, and C0id� :¼ eðy0id� ; vÞ.

7) Set the updated user key uk0id� ¼ ðxid� ; y0id� ; zid�z00id� Þ
and the updated certificate cert0id� ¼ C0id� .

The revocation algorithm could be extended to support
batch revocation, which reduces the times of time-consum-
ing operations when revoking multiple users.

The Signing Algorithm PBS:SignðÞ. With the input of a
user key ukid, a certificate certid, and a message m 2 f0; 1g�,
this algorithm outputs a signature s. The detailed procedure
is as follows.

1) Choose two random elements t1; t2 2 Z�p and com-
pute c1 :¼ y

t1
id, c2 :¼ ht2 , c3 :¼ wt2 , and c4 :¼ CidA

t2 .
2) Choose six random elements rx; rt1 ; rt2 ; rz1 ; rz2 ; r� 2

Z�p and compute the following values r1 :¼ eðc1;
hrz2 vrt2 Þeðg; hÞ�r� , r2 :¼ c

rt1
4 eðc1; hÞrxA�r� eðg; hÞ�rt1 , r3 :¼

hrt2 , r4 :¼ wrt2 , r5 :¼ crx2 h�rz2 , r6 :¼ crx3 w�rz2 , r7 :¼
c
rt1
2 h�r� , and r8 :¼ c

rt1
3 w�r� .

3) Compute the hash value

c :¼ HZðm; c1; c2; c3; c4; r1; r2; r3; r4; r5; r6; r7; r8Þ:

4) Compute sx :¼ rx þ cxid, st1 :¼ rt1 þ ct1, st2 :¼ rt2þ
ct2, sz1 :¼ rz1 þ cxidt1, sz2 :¼ rz2 þ cxidt2, and s� :¼
r� þ ct1t2.

5) Set s ¼ ðc1; c2; c3; c4; c; sx; st1 ; st2 ; sz1 ; sz2 ; s�Þ.
The Signature Verification Algorithm PBS:VerifyðÞ.With the

input of a public key pk, a messagem, and a signature s, this
algorithm outputs 1 if the message-signature pair is valid,
and 0 otherwise. The detailed procedure is as follows.

1) Compute the following values ~r1 :¼ eðc1; hsz2 vst2 Þe
ðg; hÞ�s� , ~r2 :¼ c

st1
4 eðc1; hÞsxA�s� eðg; hÞ�st1 , ~r3 :¼ hst2 c�c2 ,

~r4 :¼ wst2 c�c3 , ~r5 :¼ csx2 h�sz2 , ~r6 :¼ csx3 w�sz2 , ~r7 :¼ c
sr1
2 h�s� ,

and ~r8 :¼ c
sr1
3 w�s� .

2) Return 1 if HZðm; c1; c2; c3; c4; ~r1; ~r2; ~r3; ~r4; ~r5; ~r6; ~r7; ~r8Þ
is equal to c, and 0 otherwise.

The Revealing Algorithm PBS:RevealðÞ. With the input of
a user key ukid and a valid signature s, this algorithm out-
puts an identity id� or ? to declare a failure. The detailed
procedure is as follows.

1) Compute C :¼ c4
eðzid;c2ÞeðHGðidÞ;c3Þ.

2) Output id� if certid� is equal to C, and ? otherwise.

3.5 PRAYS

Now,we are ready to present PRAYS,which consists of seven
phases: initialization, registration, revocation, uploading, reading,
writing, and auditing.

Initialization Phase. In this phase, themanager, who decides
a security parameter �, executes as follows.

1400 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

1) Call the initialization algorithm PBS:Initð1�Þ to
obtain a public-private key pair ðpk; skÞ. Publish the
public key pk and keep the private key sk secret.

2) Create two databases as shown in Fig. 4: the certifi-
cate database, which can be delivered to users, and
the user key database, which is only possessed and
accessed by the manager.

Registration Phase. The registration phase is the only phase
that needs a secure channel between the manager and the
user. The user launches this phase by sending his/her iden-
tity id to the manager. Then, the manager executes as follows
with ðpk; skÞ after authenticating the user identity.
1) Call the key generation algorithm PBS:Genðsk; idÞ to

obtain a user key ukid and a certificate certid.
2) Insert ðid; certidÞ and ðid; ukidÞ into the certificate

database and user key database, respectively.
3) Send ðukid; certidÞ to the user.
The user stores his/her user key and the corresponding

certificate if all the following three equations hold: 1)
eðyid; vÞ ¼ Cid; 2) eðyid; vhxidÞ ¼ eðg; hÞ; and 3) eðzid; hÞeðHG

ðidÞ; wÞ ¼ A. Otherwise, the user may resubmit his/her
identity id to the manager.

Revocation Phase. Assuming the identity of the revoked
user is id, the manager executes as follows with ðpk; skÞ.
1) Call the revocation algorithm PBS:Revokeðsk; idÞ to

obtain an updated public-private key pair ðpk0; sk0Þ.
Publish the public key pk0 and keep the private key
sk0 secret.

2) Update the user keys and the corresponding certifi-
cates of all the unrevoked users in the databases as
shown in Fig. 4.

3) Remove row ðid; ukidÞ from the user key database,
while reserve row ðid; certidÞ in the certificate data-
base for revealing revision history.

4) Send ðxid; yid; z
00
id� Þ, which can be obtained from the

revocation algorithm PBS:Revokeðsk; idÞ, to an unre-
voked user whose identity is id�.

5) Regenerate the state information with the manager’s
private key if the latest state information is generated
by this revoked user (see the uploading and writing
phases for the process of generating the state
information).3

Upon receiving ðxid; yid; z
00
id� Þ, the unrevoked user whose

identity is id� executes as follows.

1) Compute y0id� :¼ ðyid=yid� Þ
1

xid��xid , z0id� :¼ zid�z00id� , and
C0id� :¼ eðy0id� ; vÞ.

2) Examine y0id� , z
0
id� , and C0id� as shown in the registra-

tion phase. Update its user key uk0id� ¼ ðxid� ; y0id� ; z
0
id�Þ

and certificate cert0id� ¼ C0id� if all equations hold.

Note that the revocation phase requires neither a secure
channel nor online unrevoked users. In practice, the infor-
mation in Step 4 of the revocation phase (i.e., ðxid; yid; z

00
id� Þ)

can be published to bulletin boards rather than directly
being sent to unrevoked users.

Uploading Phase. We assume that the file to be uploaded
consists of D data blocks fdigDi¼1. To upload this file, the
user, who possesses a user key ukid, executes as follows.

1) Call the tree building algorithm BMT:BuildðfdigDi¼1Þ
to obtain t, fgjgSj¼1, and fuigDi¼1.

2) Call the signing algorithm PBS:Signðukid;mÞ to
obtain a signature s, where m ¼ n1kg1k. . .kgS , i.e., m
is the metadata of the authenticated structure.

3) Set the state information st ¼ ðm; sÞ.
4) Send fdigDi¼1 along with t, fuigDi¼1, and st to CSP,4

and send the state information st to TPA (or to the
bulletin board as explained in Section 2).

When CSP and TPA receive st from a user, they can call
the verification algorithm PBS:Verifyðpk;m; sÞ to check
whether these information is sent from a legal user.

Reading Phase. We assume that the user possesses the lat-
est state information st which can be downloaded from the
bulletin board. The user simply sends a block index i to CSP,
who then executes as follows.

1) Compute the path from the root to the ith leaf node
and the siblings u of the path.

2) Send ðii; di; uÞ to the user.
The user, who possesses a user key ukid and state infor-

mation st, then executes as follows.

1) Parse st ¼ ðm; sÞ, wherem ¼ n1kg1k. . .kgS .
2) Compute ui :¼

QS
j¼1 g

di;j
j .

3) Terminate this process and report a failure if the proof
verification algorithm BMT:Verifyðði; 1Þ; ðdi; u; ðii; uiÞÞ;
n1; fgjgSj¼1Þ returns 0. Otherwise, di is accepted.

4) Call the revealing algorithm PBS:Revealðukid; sÞ to
obtain the revision history.

Writing Phase.Our scheme supports fully dynamic opera-
tions, including modification, insertion, and deletion. The
user, who possesses a user key ukid, a block index i, a data
block di, and the state information st, executes as follows.

1) Parse st ¼ ðm; sÞ, wherem ¼ n1kg1k. . .kgS .
2) Choose op according to the operation, and call the tree

update algorithm BMT:Update to obtain ui and the
updated path.We assume that the updated root is n01.

3) Call the signing algorithm PBS:Signðukid;m0Þ to
obtain a signature s0, wherem0 ¼ n01kg1k. . .kgS .

4) Send di along with st0 ¼ ðm0; s0Þ, ui, and the updated
path to CSP, and send st0 to TPA (or to the bulletin
board).

Meanwhile, CSP and TPA can verify st0 via the verification
algorithmPBS:Verifyðpk;m0; s0Þ as in the uploading phase.

Auditing Phase. With the input of the public key pk and
the latest state information st, TPA executes as follows.

Fig. 4. The databases maintained by the manager.

3. The manager’s private key is obtained by performing the registra-
tion phase locally on the manager side.

4. Actually, fuigDi¼1 can be computed by CSP, however, that
increases the computation cost of CSP. See the discussion on the prov-
ing algorithm in Section 3.3.

HE ET AL.: DYNAMIC GROUP-ORIENTED PROVABLE DATA POSSESSION IN THE CLOUD 1401

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

1) Choose B random indexes fibgBb¼1 and B random ele-
ments fnbgBb¼1 where nj 2 Z�p.

2) Send fðib; nbÞgBb¼1 to CSP.
Note that the indexes can be generated from a pseudo-

random permutation, and the elements can be generated
from a pseudorandom function. Then, TPA only needs to
send B and two keys (one is used in the pseudorandom per-
mutation, and the other is used in the pseudorandom func-
tion) to CSP.

When receiving fðib; nbÞgBb¼1, CSP executes as follows.

1) Call the proving algorithm BMT:Proveðfðib; nbÞgBb¼1;
fdigDi¼1; t; fuigDi¼1Þ to obtain the proof$.

2) Send$ to TPA.
TPA verifies the response as follows.

1) Terminate and report a failure if the proof verifica-
tion algorithm BMT:Verifyðfðib; nbÞgBb¼1; $; n1; fgjgSj¼1Þ
returns 0.

2) Accept the response and report a success.

4 SECURITY ANALYSIS

In this section, we examine the security properties of PRAYS,
including integrity, anonymity, and traceability (see Sec-
tion 1). Secure user revocation is considered in the latter two
properties. Note that, the formal definitions for dynamic
group-oriented provable data possession are almost the
same with the definitions for blockless Merkle tree and per-
mission-based signature, and we formalize the latter two in
Sections 3.3 and 3.4, respectively. Therefore, we omit the for-
mal definitions for dynamic group-oriented provable data
possession to avoid redundant definitions, and explain why
the security of BMT and PBS schemes implies the security of
PRAYS. Generally, integrity of PRAYS is guaranteed by the
BMT scheme while anonymity and traceability of PRAYS
are achieved by the PBS scheme. The proofs for anonymity
(Theorem 2) and traceability (Theorem 3) are given in
Appendix A. Roughly speaking, the security (i.e., anonymity
and traceability) of proposed PBS scheme is based on a zero-
knowledge proof protocol (also see Appendix A).

4.1 Integrity

Integrity means that TPA can reconstruct the challenged data
blocks if CSP passed the checking process [31]. Since TPA
reports a success if and only if the proof verification algorithm
of BMT returns 1, it is obvious that the integrity of PRAYS can
be reduced to the integrity of the BMT scheme once TPA pos-
sesses the latest state information, that is guaranteed by the
unforgeability of the PBS scheme (which is implied by the
traceability of the PBS scheme).

Theorem 1. The proposed BMT scheme guarantees the integrity
if the hash function is collision-resistant and the discrete loga-
rithm problem is hard in G.

Proof. We first prove that every uib corresponds to the ibth
leaf node and is not tampered and is up-to-date where
1 � b � B if the reconstructed root is equal to n1. Since the
hash function is collision-resistant, the adversary could
not find two values n�2 and n�3 such that Hðn�2kn�3Þ ¼ s1;
otherwise, a collision is found immediately. Likewise, the

adversary cannot tamper n4, n5, . . . , which implies that the
siblings u and fðiib ; uibÞgBb¼1 (i.e., the last two parts of the
proof$) can only be generated from the latest tree t. Since
ði; liÞ in ni can be used to determine the structure of the
tree, the adversary cannot sendwrong positions either.

Then, we prove that the challenger can reconstruct

challenged blocks if
QS

j¼1 g
mj
j ¼

QB
b¼1 u

nb
ib
(i.e., pass the sec-

ond step of the proof verification algorithm). Note that the
right side of the equation is a constant from the perspec-

tive of the challenger since every uib corresponds to the

ibth leaf node and ni is generated by the challenger. Since

the discrete logarithm problem is hard in G, the adversary

cannot output fm�1; . . .;m�Sg that satisfies the following two

conditions: 1) exists m�j 6¼ mj for some j; 2)
QS

j¼1 g
m�
j

j ¼QB
i¼1 u

ni
i . Therefore, every mj is a linear combination of

challenged segments fdib;jgBb¼1. Then, the challenger could
generate other challenges with the same indexes fibgBb¼1
but different coefficients fnbgBb¼1 for B times, and recon-

struct the challenged blocks by solving a system of linear

equations. Thus, the proposed BMT scheme guarantees

integrity. tu

4.2 Anonymity

Anonymitymeans that the entities outside of a group, includ-
ing CSP, TPA, and revoked users, cannot learn the signer’s
identity. That is, PRAYS guarantees anonymity if the pro-
posed PBS scheme provides anonymity.

Theorem 2. The proposed PBS scheme guarantees the anonymity
under the random oracle model if the Computational Diffie-
Hellman (CDH) problem is hard in G, and the Decisional Bilin-
ear Diffie-Hellman (DBDH) problem is hard.

4.3 Traceability

Traceability means that the users within the same group can
learn the signer’s identity in the reading phase, while the
entities outside of the group, including CSP, TPA, and the
revoked users, cannot forge or tamper the signature. That is,
PRAYS guarantees traceability if the proposed PBS scheme
provides traceability.

Theorem 3. The proposed PBS scheme guarantees the traceability
under the random oracle model if the Strong Diffie-Hellman
(SDH) problem is hard inG.

5 PERFORMANCE EVALUATION

In this section, we first theoretically analyze the performance
of PRAYS. Then, we examine PRAYS through extensive
experiments.

TABLE 2
Storage Cost Comparison

User TPA CSP

PRAYS OðNÞ Oð1Þ OðDÞ
Oruta [12] OðNÞ OðN þDÞ OðDÞ
Panda [11] OðNÞ OðN þDÞ OðDÞ
YY [10] OðNÞ OðN þDÞ OðDÞ
JCM [14] OðDÞ OðDÞ OðDÞ

1402 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

5.1 Theoretical Analysis

The theoretical analysis focuses on the storage cost and the
revocation cost. In the analysis, N denotes the number of
users; D denotes the number of data blocks; U denotes the
number of unrevoked users; and R denotes the number of
data blocks signed by the revoked user.

We first analyze the storage cost of PRAYS which is OðNÞ
on the user side, Oð1Þ on the TPA side, and OðDÞ on the CSP
side, respectively. Although both the user key and the public
key in PRAYS are Oð1Þ, the user needs to possess the certifi-
cate database to obtain the revision history, which makes the
storage cost of PRAYS on the user side be OðNÞ.5 TPA main-
tains auditing metadata which consists of the public key and
the state information. CSP stores users’ data and extra infor-
mation used for integrity checking, and both of them are
OðDÞ in PRAYS. Table 2 shows the storage cost of PRAYS
compared with other schemes.6 From Table 2, PRAYS is the
only scheme that achieves constant auditingmetadata.

Then, we analyze the cost in the revocation phase.When a
user is revoked, both the computation cost and the commu-
nication cost of PRAYS are Oð1Þ on the unrevoked user side
and OðUÞ on the manager side, respectively. That is because
the manager needs to compute and publish z00id� for every
unrevoked user while each unrevoked user only receives
and updates its own user key. Table 3 shows the computa-
tion cost and communication cost of PRAYS compared with
other schemes. SinceU ismuch smaller thanD andR in prac-
tice, we believe that PRAYS in the revocation phase is more
efficient thanmost of the existing schemes.

5.2 Experiments and Analysis

We implemented PRAYS and related schemes by the PBC
library 0.5.14. CSP and TPA are desktops running Ubuntu
16.04 with an Intel 2.6 GHz CPU and 8 GB memory. Users
and the manager are laptops running Ubuntu 14.04 with an
Intel 2.5 GHz CPU and 4 GB memory. In all implementa-
tions, we fixed the security parameter to 160 bits and the
block size to 4 kB as in [10]. The experiments focused on four
phases: initialization, registration, uploading, and auditing.
The reading and writing phases are similar to the auditing
and uploading phases, respectively, except for that there is
only one block involved. The revocation phase has been

analyzed in Section 5.1. Therefore, we did not consider these
phases. The files of specified sizes used in our experiments
are randomly generated by a Python script. All experimental
results are the average of 10 trials.

We first examine the size of the public key generated in
the initialization phase, which is later delivered to users
and TPA. Note that the scheme in JCM needs to determine
D in advance. Therefore, we first consider that there is only
one block, and Fig. 5a shows the result in this case. The size
of the public key is independent with N in PRAYS and
JCM, while the size grows with N increasing in other
schemes. Fig. 5b presents the relationship between the size of
the public key and D when N ¼ 15. The size grows as D is
raised in JCM, while the size is independent with D in other
schemes. Therefore, among the five examined schemes,
PRAYS is the only scheme whose public key size is indepen-
dent withN andD.

Then, we examine the computation cost in the initializa-
tion and registration phases, under which the system gener-
ates a public key and all user keys. Fig. 6a shows the results
when D ¼ 1. The computation cost increases with N raised
for all the five schemes, since the system needs to generate a
private key for each user. Then, we fix N ¼ 15, and investi-
gate the computation cost with different D as shown in
Fig. 6b. The computation cost for all schemes except JCM is
independent with D. Since the computation cost in JCM
grows as D rising and is 96 seconds when there are 2 blocks
(i.e., the file is only 8 kB), it is not suitable for large files. As
a result, PRAYS is as efficient as YY, Panda, and Oruta for
key generation.

In the uploading phase, we investigate both the computa-
tion and the communication cost on the user side. Fig. 7
presents the computation cost, under which PRAYS, YY, and
JCM have almost the same performance. That is because the
uploader needs to execute one exponentiation for each ele-
ment in Zp. Panda and Oruta are less efficient than the other
three schemes in this phase since they need more exponen-
tiations for each element in Zp. The uploading phase is the
most time-consuming phase for all these five schemes.

TABLE 3
Revocation Cost Comparison

Unrevoked User Manager CSP

Computation Communication Computation Communication Computation Communication

PRAYS Oð1Þ Oð1Þ OðUÞ OðUÞ N/A Oð1Þ
Oruta [12] OðDÞ OðDÞ N/A N/A N/A OðDÞ
Panda [11] Oð1Þ Oð1Þ N/A N/A OðRÞ Oð1Þ
YY [10] N/A N/A N/A Oð1Þ OðRÞ Oð1Þ
JCM [14] Oð1Þ Oð1Þ Oð1Þ Oð1Þ N/A Oð1Þ

Fig. 5. Storage cost for the public key.

5. This storage cost can be reduced to Oð1Þ via the encryption
scheme in [32] and any digital signature scheme. However, we do not
consider this extension for simplicity.

6. Some schemes do not indicate that whether users should possess
the public key. We think that users need to verify the tags when they
read a data block from the cloud as shown in Section 3.5. Therefore, the
storage cost on the user sider considers the public key in all the
schemes.

HE ET AL.: DYNAMIC GROUP-ORIENTED PROVABLE DATA POSSESSION IN THE CLOUD 1403

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

The communication cost in the uploading phase consists
of three parts: data size, the size of the authenticated struc-
ture, and the size of the state information. In our experi-
ments, we omit the communication cost for transmitting the
data to the cloud since this cost is the same for all schemes,
and focus on the other two parts (which have been theoreti-
cal analyzed in Table 2). Fig. 8a shows the size of the authen-
ticated structure with respect to the data size when N ¼ 15,
which needs to be stored at CSP. In PRAYS, CSP needs to
store the entire tree t and fuigDi¼1. Therefore, the communica-
tion cost of PRAYS growswithD raised. The communication
cost of Panda grows with D and N raising, since for each
data block, the signer has to generate a ring signature whose
size grows linearly with N . Thus, Panda is not suitable for
large groups. YY and JCM are efficient in terms of communi-
cation cost in this phase, however, they do not support inser-
tion operation at all. Fig. 8b presents the size of the state
information, which needs to be stored at TPA (or the bulletin
boards). The cost is constant for PRAYS while the cost grows
linearly as D rises in other schemes. As a result, PRAYS and
YY have their own advantages in this phase while other
schemes are inefficient in practice.

In the auditing phase, we examine the computation costs
at CSP and TPA, respectively, and the communication cost
between CSP and TPA. As in other schemes, we fix B ¼ 460,
which has been proved that it is sufficient for auditing [4].
Fig. 9a shows the computation cost on CSP.7 When the data
size is less than 1.8 MB,D is less than 460 in all schemes, and

TPA challenges all the data blocks in this case. Therefore, the
computation cost grows with D for all schemes. When
D > 460, the computation cost grows with D for PRAYS,
which is caused by computing siblings, while the cost is con-
stant in other schemes.8 Fig. 9b presents the computation
cost on TPA, in which the result is similar to Fig. 9a. Note
that the growth rate of PRAYS in Fig. 9 is extremely slow
when the file is larger than 4 MB. That is because the time-
consuming operations are constantwhen the number of chal-
lenged blocks stops increasing.

Fig. 10 shows the communication cost between CSP and
TPA. The communication cost grows slowly with D for
PRAYS, while the cost is constant in other schemes when
the data size is larger than 1.8 MB. This communication cost
is acceptable since PRAYS is the only solution that supports
fully dynamic operations.

6 RELATED WORK

Single-Writer Solutions. Integrity checking in the cloud was
first explored under the single-writer model for personal data
management. Juels and Kaliski introduced the concept of
Proof of Retrievability (PoR) and proposed a concrete con-
struction [5]. Unfortunately, their scheme only allows limited
times of integrity checking. Ateniese et al. independently
introduced a similar concept, called Provable Data Possession
(PDP) [4]. Their scheme allows unlimited times of integrity
checking, and supports public auditing, which means anyone
can check the data integrity. This property is highly preferred
since users can delegate the checking capability to third-party
verifiers for alleviating the computation burden. Neverthe-
less, their scheme does not support dynamic operations.

Subsequent works devoted to integrity checking schemes
for dynamic data [15], [16], [24], [30], [33], [34], [35]. In pub-
lic auditing, in addition to the public key, the verifiers usu-
ally maintain some information about the current status of
the audited data, called state information. The state informa-
tion is crucial to dynamic cloud storage and leverages which

Fig. 6. Computation cost for key generation.

Fig. 7. Computation cost in the upload phase.

Fig. 8. Communication cost in the upload phase.

Fig. 9. Computation cost in the auditing phase.

Fig. 10. Communication cost in the auditing phase.

7. In JCM, CSP simply reads 460 blocks and sends them to TPA
without any computation, and therefore the computation cost is
omitted.

8. The computation cost in YY grows with the number of users who
generate the challenged blocks increasing. However, we fix this number
to 1.

1404 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

the verifier determines whether the stored data on the cloud
is up-to-date. However, applying those schemes to the
multi-writer model would raise performance concern in the
revocation process.

Multi-Writer Solutions. Researchers then focus on integrity
checking schemes under the multi-writer model which sup-
ports data sharing among a group of users [25]. Wang et al.
introduced the concept of group-oriented proofs of storage,
but did not consider any dynamic data operations [13].

Wang et al. proposed a public auditing scheme, called
Oruta, which guarantees identity privacy [12]. However,
Oruta does not support non-trivial user revocation due to
the inherent property of the ring signature. To support user
revocation, Wang et al. proposed another solution, called
Panda [9], [11]. Nevertheless, Panda could not resist the col-
lusion between the cloud and the revoked user.

Yuan and Yu proposed a public integrity checking scheme
for data sharing, which supports secure user revocation [10].
Unfortunately, their scheme does not satisfy the security defi-
nition for integrity checking in the cloud [31] as opposed to
previous schemes. That is, no one can extract the challenged
blocks during the checking process in their scheme.

Jiang et al. proposed a public integrity auditing scheme
for shared data based on group signature and vector commit-
ment [14]. Their solution supports secure user revocation
and guarantees identity privacy. However, it cannot reveal
revision history to users, since with group signature, even
group members could not identify who has updated the
shared data. Furthermore, their solution requires that the
data size has to be fixed and determined at the beginning of
system initialization,whichmakes their solution less flexible.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a privacy-preserving auditing
scheme for dynamic shared data, named PRAYS. It is the
first group-oriented provable data possession scheme that
supports fully dynamic operations as well as constant audit-
ing metadata to our knowledge. The proposed scheme is
boosted by a new two-step paradigm designed for group-
oriented integrity checking. In order to realize this para-
digm, we presented a blockless Merkle tree for the first step,
and presented a permission-based signature for the second
step. With these two tools, PRAYS provides all the essential
features in the multi-writer storage services, including fully
dynamic operations, constant auditing metadata, secure
user revocation, anonymity, and traceability.

In our future work, we will extend PRAYS from the fol-
lowing aspects. 1) Reducing the storage cost on the user side
to Oð1Þ as mentioned in Section 5.1. 2) Optimizing the com-
putation cost in the revocation phase. Unlike the traditional
paradigmwhose lower bound of the computation cost in the
revocation phase isOðRÞ, it is possible to improve PRAYS by
enhancing PBS.

APPENDIX

SECURITY PROOFS FOR THE PBS SCHEME

In this section, we prove the security of the proposed PBS
scheme. To prove the security, i.e., Theorems 2 and 3, we first

show how the proposed scheme can be converted from a
zero-knowledge proof protocol.

Let G and GT be two multiplicative cyclic groups of prime
order p, and e : G� G! GT be a bilinear map. The system
chooses two random generates g; h 2 G, and three random
elements a;b 2 Z�p and h 2 G. Then, the public parameter is
ðg; h; v :¼ ha; w :¼ h�b; A :¼ eðh; hÞÞ. The proposed zero-
knowledge proof protocol for an instance of the SDHproblem
consists of four stage: commit, challenge, response, and verify.

Commit Stage. A prover possesses a pair of solution
ðx; y :¼ g

1
aþxÞ for a certain SDH problem, where x 2 Z�p, y 2 G,

and the equation eðy; vhxÞ ¼ eðg; hÞ holds. In order to prove
the possession of such a solution, the prover chooses two
random values t1; t2 2 Z�p, and computes c1 :¼ yt1 , c2 :¼ ht2 ,
c3 :¼ wt2 , c4 :¼ eðy; vÞAt2 . It also computes three auxiliary
values z1 :¼ xt1, z2 :¼ xt2, and � :¼ t1t2. Then, it must prove
to the verifier that it possesses the six-tuple ðx; t1; t2; z1; z2; �Þ
which satisfies the following eight relations:

eðc1; hz2vt2Þeðg; hÞ�� ¼ 1; c
t1
4 eðc1; hÞxA��eðg; hÞ�t1 ¼ 1;

ht2 ¼ c2; wt2 ¼ c3;

cx2h
�z2 ¼ 1; cx3w

�z2 ¼ 1;

c
t1
2 h
�� ¼ 1; c

t1
3 w
�� ¼ 1:

Therefore, it chooses six random blinding values rx, rt1 ,
rt2 , rz1 , rz2 , and r� from Z�p, and computes r1 :¼ eðc1; hrz2 vrt2 Þ
eðg; hÞ�r� , r2 :¼ c

rt1
4 eðc1; hÞrxA�r� eðg; hÞ�rt1 , r3 :¼ hrt2 , r4 :¼

wrt2 , r5 :¼ crx2 h�rz2 , r6 :¼ crx3 w�rz2 , r7 :¼ c
rt1
2 h�r� , and r8 :¼

c
rt1
3 w�r� . The 12-tuple ðc1; c2; c3; c4; r1; r2; r3; r4; r5; r6; r7; r8Þ is
sent to the verifier.

Challenge Stage. After receiving from the prover the 12-
tuple ðc1; c2; c3; c4; r1; r2; r3; r4; r5; r6; r7; r8Þ, the verifier choo-
ses a random value c Z�p, and sends c to the prover.

Response Stage. When receiving the challenge c, the
prover computes sx :¼ rx þ cxid, st1 :¼ rt1 þ ct1, st2 :¼ rt2þ
ct2, sz1 :¼ rz1 þ cxidt1, sz2 :¼ rz2 þ cxidt2, and s� :¼ r� þ ct1t2.
Then, ðsx; st1 ; st2 ; sz1 ; sz2 ; s�Þ is sent to the verifier.

Verify Stage. Finally, the verifier accepts the proof only if
all the following equations hold.

eðc1; hsz2 vst2 Þeðg; hÞ�s� ¼? r1;

c
st1
4 eðc1; hÞsxA�s� eðg; hÞ�st1 ¼? r2;

hst2 c�c2 ¼? r3; w
st2 c�c3 ¼? r4; c

sx
2 h�sz2 ¼? r5;

csx3 w�sz2 ¼? r6; c
sr1
2 h�s� ¼? r7; c

sr1
3 w�s� ¼? r8:

Lemma 1. The protocol is complete.

This lemma can be proved via verifying the equations in
the verify stage, therefore, we omit the proof here.

Lemma 2. The transcripts of the protocol can be simulated.

Proof. The system selects three random values t1; t2 Z�p
and y G, and sets c1 :¼ yt1 , c2 :¼ ht2 , c3 :¼ wt2 , c4 :¼
eðy; vÞAt2 . The distribution of the 4-tuple ðc1; c2; c3; c4Þ is
identical with any prover.

The 4-tuple ðc1; c2; c3; c4Þ is then given to the simulator,
and the simulator picks a random value c Z�p. Then,

HE ET AL.: DYNAMIC GROUP-ORIENTED PROVABLE DATA POSSESSION IN THE CLOUD 1405

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

after selecting six random value sx, st1 , st2 , sz1 , sz2 , and s�
in Z�p, the simulator computes r1 :¼ eðc1; hsz2 vst2 Þeðg;
hÞ�s� , r2 :¼ c

st1
4 eðc1; hÞsxA�s� eðg; hÞ�st1 , r3 :¼ hst2 c�c2 , r4 :¼

wst2 c�c3 , r5 :¼ csx2 h�sz2 , r6 :¼ csx3 w�sz2 , r7 :¼ c
sr1
2 h�s� , and

r8 :¼ c
sr1
3 w�s� . Obviously, the distributions of generated

ðsx; st1 ; st2 ; sz1 ; sz2 ; s�Þ and ðr1; r2; r3; r4; r5; r6; r7; r8Þ are
identical to the output of the prover. Finally, the simula-
tor outputs ðc1; c2; c3; c4; r1; r2; r3; r4; r5; r6; r7; r8; c; sx; st1 ;
st2 ; sz1 ; sz2 ; s�Þ, whose distribution is identical to the tran-
scripts of the protocol. That is, the transcripts of the pro-
tocol can be simulated. tu

Lemma 3. There is an extractor for the protocol.

Proof.We assume that an extractor can rewind the protocol,
and submit two different values c and c0 to the prover.
Since the prover answers c and c0 with the same ðt1; t2; rx;
rt1 ; rt2 ; rz1 ; rz2 ; r�Þ, the extractor can obtain two transcripts

ðc1; c2; c3; c4; r1; r2; r3; r4; r5,r6; r7; r8; c; sx; st1 ; st2 ; sz1 ; sz2 ; s�Þ
and ðc1; c2; c3; c4; r1; r2; r3; r4; r5; r6,; r7; r8; c

0; s0x; s
0
t1
; s0t2 ; s

0
z1
;

s0z2 ; s
0
�Þ. Let Dc :¼ c� c0, Dsx :¼ sx � s0x, Dst1 :¼ st1 � s0t1 ,

Dst2 :¼ st2 � s0t2 , Dsz1 :¼ sz1 � s0z1 , Dsz2 :¼ sz2 � s0z2 , and ,

Ds� :¼ s� � s0�. Finally, the extractor outputs

~t1 :¼ Dst1
Dc

; ~t2 :¼ Dst2
Dc

; ~x :¼ Dsx
Dc

; and ~y :¼ c
1=~t1
1 :

Since eð~y; vh~xÞ ¼ eðg; hÞ, ð~x; ~yÞ is a solution of SDH prob-

lem, which proves this lemma. tu
Theorem 4. The protocol proposed in this section is an honest-

verifier zero-knowledge proof of knowledge of an SDH pair.

This theorem can be directly obtained from Lemmas 1, 2,
and 3.

Let HZ : f0; 1g� ! Z�p be a collision-resistant hash func-
tion, and m 2 f0; 1g� be a message. Then, we can obtain a
secure signature scheme in the random oracle model via the
Fiat-Shamir heuristic [36] from the proposed protocol. The
signing algorithm and verification algorithm of the signature
scheme are exactly the same with those in the proposed PBS
scheme in Section 3.4. Now, we are able to prove Theorem 2.
That is, the proposed PBS scheme guarantees the anonymity
under the random oracle model if the CDH problem is hard
inG, and the DBDHproblem is hard.

Proof. Since the proposed signature scheme is converted
from a zero-knowledge proof protocol via the Fiat-Shamir
heuristic under the random oracle model, ðc; sx; st1 ; st2 ;
sz1 ; sz2 ; s�Þ does not contain any information. Therefore,
we focus on ðc1; c2; c3; c4Þ in s.

Recall that c1 :¼ y
t1
idk
, c2 :¼ ht2 , c3 :¼ wt2 , and c4 :¼

CidkA
t2 , where yidk is part of the user key ukidk and Cidk ¼

eðyidk ; vÞ is the corresponding certificate. From [32], the
probability that the adversary distinguishes ðc2; c3; c4Þ
from ðc2; c3; ZÞ is negligible greater than 1/2 if the CDH
problem is hard in G and the DBDH problem is hard,
where Z is a random element in GT . Therefore, for each
signing oracle query, we can choose a random y 2 G and
two random number t1; t2 2 Z�p, and compute ðyt1 ; ht2 ;
wt2 ; eðy; vÞAt2Þ which is indistinguishable from the truly
ðc1; c2; c3; c4Þ generated from yidk . Thus, the probability
that the adversary wins is negligible greater than 1/2,

which implies that the proposed PBS scheme guarantees
anonymity. tu
Then, we prove Theorem 3. That is, the proposed PBS

scheme guarantees the traceability under the random oracle
model if the Strong Diffie-Hellman problem is hard in G.
Note that traceability implies unforgeability which is the
basic requirement for any digital signature scheme. To
implement the traditional unforgeability, we only need to
disable the capability of querying the key generation oracle
in Definition 6.

Proof. The strong Diffie-Hellman problem is that with the
input of ðg; h; ha; . . . ; haq Þ 2 Gqþ2, any PPT algorithm could

not output ðx�; g1=ðaþx�ÞÞ except for a negligible probability,
where q is a system parameter, and x� is selected by the

algorithm. We prove that we can extract a pair of ðx�;
g1=ðaþx

�ÞÞ from the signature s�, i.e., solve the SDHproblem,

if we view the hash function HZ as a random oracle.

This process is trivial from Lemma 3, in which the extra-

ctor can compute ðx�; g1=ðaþx�ÞÞ by rewinding the zero-

knowledge proof protocol. Since the SDH problem is
hard, which means that the adversary cannot output a

validmessage-signature pair ðm�; s�Þwith unattained SDH

pair (i.e., with unrevoked user key) except for negligible

probability. Thus, the proposed PBS scheme guarantees

traceability. tu

ACKNOWLEDGMENTS

This research was supported in part by the National Natural
Science Foundation of China under grants 61702379,
U1836202, 61772383, 61572380, 61772466; by the China Post-
doctoral Science Foundation under grant No. 2018M630877,
2019T120685; by Science, Technology and Innovation
Commission of Shenzhen Municipality under grant No.
JCYJ20170303170108208; by the Zhejiang Provincial Natural
Science Foundation for Distinguished Young Scholars under
No. LR19F020003; by the Provincial Key Research andDevel-
opment Program of Zhejiang, China under No. 2017C01055.
The corresponding author is Jing Chen.

REFERENCES

[1] H. Wang, D. He, and S. Tang, “Identity-based proxy-oriented data
uploading and remote data integrity checking in public cloud,” IEEE
Trans. Inf. Forensics Secur., vol. 11, no. 6, pp. 1165–1176, Jun. 2016.

[2] Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo, Y. Dai, and
G. Min, “Identity-based remote data integrity checking with per-
fect data privacy preserving for cloud storage,” IEEE Trans. Inf.
Forensics Secur., vol. 12, no. 4, pp. 767–778, Apr. 2017.

[3] Z. Ren, L. Wang, Q. Wang, andM. Xu, “Dynamic proofs of retriev-
ability for coded cloud storage systems,” IEEE Trans. Serv. Com-
put., vol. 11, no. 4, pp. 685–698, Jul./Aug. 2018.

[4] G.Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Proc.
14th ACMConf. Comput. Commun. Secur., 2007, pp. 598–609.

[5] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of retrievability for
large files,” in Proc. 14th ACM Conf. Comput. Commun. Secur., 2007,
pp. 584–597.

[6] G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from homo-
morphic identification protocols,” in Proc. Int. Conf. Theory Appl.
Cryptology Inf. Secur., 2009, pp. 319–333.

[7] H. Wang, “Identity-based distributed provable data possession in
multicloud storage,” IEEE Trans. Serv. Comput., vol. 8, no. 2,
pp. 328–340, Mar./Apr. 2015.

1406 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

[8] S. Guarino, E. S. Canlar, M. Conti, R. D. Pietro, and A. Solanas,
“Provable storage medium for data storage outsourcing,” IEEE
Trans. Serv. Comput., vol. 8, no. 6, pp. 985–997, Nov./Dec. 2015.

[9] B. Wang, B. Li, and H. Li, “Public auditing for shared data with effi-
cient user revocation in the cloud,” in Proc. IEEE Int. Conf. Comput.
Commun., 2013, pp. 2904–2912.

[10] J. Yuan and S. Yu, “Efficient public integrity checking for cloud
data sharing with multi-user modification,” in Proc. IEEE Conf.
Comput. Commun., 2014, pp. 2121–2129.

[11] B. Wang, B. Li, and H. Li, “Panda: Public auditing for shared data
with efficient user revocation in the cloud,” IEEE Trans. Serv. Com-
put., vol. 8, no. 1, pp. 92–106, Jan./Feb. 2015.

[12] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public
auditing for shared data in the cloud,” IEEE Trans. Cloud Comput.,
vol. 2, no. 1, pp. 43–56, Jan.–Mar. 2014.

[13] Y. Wang, Q. Wu, B. Qin, X. Chen, X. Huang, and Y. Zhou, “Group-
oriented proofs of storage,” in Proc. 10th ACM Symp. Inf. Comput.
Commun. Secur., 2015, pp. 73–84.

[14] T. Jiang, X. Chen, and J. Ma, “Public integrity auditing for shared
dynamic cloud data with group user revocation,” IEEE Trans.
Comput., vol. 65, no. 8, pp. 2363–2373, Aug. 2016.

[15] C. C. Erway, A. K€upç€u, C. Papamanthou, and R. Tamassia,
“Dynamic provable data possession,” ACM Trans. Inf. Syst. Secur.,
vol. 17, no. 4, pp. 15:1–15:29, 2015.

[16] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic
proofs of retrievability,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2013, pp. 325–336.

[17] C. Garman, M. Green, and I. Miers, “Decentralized anonymous
credentials,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2014.

[18] J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, and R. Du, “CertChain: Public
and efficient certificate audit based on blockchain for TLS con-
nections,” in Proc. IEEE Conf. Comput. Commun., 2018, pp. 2060–2068.

[19] S. Yao, J. Chen, K. He, R. Du, T. Zhu, and X. Chen, “PBCert: Privacy-
preserving blockchain-based certificate status validation toward
mass storagemanagement,” IEEEAccess, vol. 7, pp. 6117–6128, 2019.

[20] M. Maffei, G. Malavolta, M. Reinert, and D. Schroder, “Privacy
and access control for outsourced personal records,” in Proc. IEEE
Symp. Secur. Privacy, 2015, pp. 341–358.

[21] J. Chen, K. He, Q. Yuan, M. Chen, R. Du, and Y. Xiang, “Blind fil-
tering at third parties: An efficient privacy-preserving framework
for location-based services,” IEEE Trans. Mobile Comput., vol. 17,
no. 11, pp. 2524–2535, Nov. 2018.

[22] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg,
andM. Smith, “SoK: Secure messaging,” in Proc. IEEE Symp. Secur.
Privacy, 2015, pp. 232–249.

[23] H. Corrigan-Gibbs, D. Boneh, and D. Mazieres, “Riposte: An
anonymous messaging system handling millions of users,” in
Proc. IEEE Symp. Secur. Privacy, 2015, pp. 321–338.

[24] Q.Wang, C.Wang,K. Ren,W. Lou, and J. Li, “Enabling public audit-
ability and data dynamics for storage security in cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847–859,
May 2011.

[25] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A scalable
cloud file system with efficient integrity checks,” in Proc. 28th
Annu. Comput. Secur. Appl. Conf., 2012, pp. 229–238.

[26] D. Catalano, “Homomorphic signatures and message authentication
codes,” inProc. Int. Conf. Secur. CryptographyNetw., 2014, pp. 514–519.

[27] M. F. Ezerman, H. T. Lee, S. Ling, K. Nguyen, and H. Wang, “A
provably secure group signature scheme from code-based assum-
ptions,” in Proc. Int. Conf. Theory Appl. Cryptology Inf. Secur., 2015,
pp. 260–285.

[28] B. Libert, S. Ling, K. Nguyen, and H. Wang, “Zero-knowledge
arguments for lattice-based accumulators: Logarithmic-size ring
signatures and group signatures without trapdoors,” in Proc.
Annu. Int. Conf. Theory Appl. Cryptographic Techn., 2016, pp. 1–31.

[29] A. Oprea and M. K. Reiter, “Integrity checking in cryptographic
file systems with constant trusted storage,” in Proc. 16th USENIX
Secur. Symp. USENIX Secur. Symp., 2007, Art. no. 13.

[30] C. Erway, A. K€upc€u, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. 16th ACM Conf. Comput. Com-
mun. Secur., 2009, pp. 213–222.

[31] H. Shacham and B. Waters, “Compact proofs of retrievability,” J.
Cryptology, vol. 26, no. 3, pp. 442–483, 2013.

[32] Q. Wu, Y. Mu, W. Susilo, B. Qin, and J. Domingo-Ferrer,
“Asymmetric group key agreement,” in Proc. Annu. Int. Conf. The-
ory Appl. Cryptographic Techn., 2009, pp. 153–170.

[33] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proc. 4th Int. Conf.
Secur. Privacy Commun. Netw., 2008, Art. no. 9.

[34] D. Cash, A. K€upç€u, and D.Wichs, “Dynamic proofs of retrievability
via oblivious RAM,” in Proc. Annu. Int. Conf. Theory Appl. Crypto-
graphic Techn., 2013, pp. 279–295.

[35] K. He, J. Chen, R. Du,Q.Wu,G. Xue, and X. Zhang, “DeyPoS: Dedu-
plicatable dynamic proof of storage for multi-user environments,”
IEEE Trans. Comput., vol. 65, no. 12, pp. 3631–3645, Dec. 2016.

[36] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Proc. Conf. Theory
Appl. Cryptographic Techn., 1986, pp. 186–194.

Kun He received the PhD degree in computer
science from theComputer School,Wuhan Univer-
sity. He is a postdoctor of Wuhan University. His
research interests include cryptography, network
security, mobile computing, and cloud computing.

Jing Chen received the PhD degree in computer
science from the Huazhong University of Science
and Technology, Wuhan. He worked as a full pro-
fessor in Wuhan University from 2015. His
research interests in computer science are in the
areas of network security, cloud security. He has
published more than 100 research papers in many
international journals and conferences, such as the
IEEE Transactions on Dependable and Secure
Computing, the IEEE Transactions on Information
Forensics and Security, the IEEE Transactions on

Mobile Computing, the IEEE Transactions on Parallel & Distributed Sys-
tems, the IEEE Transactions onComputers, INFOCOM, SECON, et al. He
acts as a reviewer for many Journals and conferences, such as the IEEE
Transactions on Information Forensics andSecurity, the IEEE/ACMTrans-
actions onNetworking.

Quan Yuan is an assistant professor with the
Department of Math and Computer Science, Uni-
versity of Texas-Permian Basin, TX. His research
interests include mobile computing, routing proto-
cols, peer-to-peer computing, parallel and distrib-
uted systems, and computer networks. He has
published more than 30 research papers in many
international journals and conferences, such as
the IEEE Transactions on Parallel and Distributed
Systems, INFOCOM, MobiHoc, SECON, and
TrustCom.

Shouling Ji received the PhD degree in electrical
and computer engineering from the Georgia Insti-
tute of Technology and the PhD degree in com-
puter science from Georgia State University. He is
a ZJU 100-Young professor with the College of
Computer Science and Technology, Zhejiang Uni-
versity and a research faculty with the School of
Electrical and Computer Engineering, Georgia
Institute of Technology. His current research inter-
ests include AI security, data-driven security and
data analytics. He is a member of the IEEE and
ACM and was the Membership chair of the IEEE
Student Branch atGeorgia State (2012-2013).

HE ET AL.: DYNAMIC GROUP-ORIENTED PROVABLE DATA POSSESSION IN THE CLOUD 1407

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

Debiao He received the PhD degree in applied
mathematics from the School of Mathematics and
Statistics, Wuhan University, in 2009. He is cur-
rently a professor in School of Cyber Science
and Engineering, Wuhan University. His main
research interests include cryptography and infor-
mation security, in particular, and cryptographic
protocols.

Ruiying Du received the BS, MS, PhD degrees in
computer science fromWuhan University, Wuhan,
China, in 1987, 1994 and 2008, respectively. She
is a professor at School of Cyber Science and
Engineering, Wuhan University. Her research
interests include network security, wireless net-
work, cloud computing andmobile computing. She
has published more than 80 research papers in
many international journals and conferences, such
as the IEEE Transactions on Parallel and Distrib-
uted System, the International Journal of Parallel
and Distributed System, INFOCOM, SECON,
TrustCom, NSS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1408 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 3, MAY/JUNE 2021

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 12:04:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

