
DELIA: Distributed Efficient Log Integrity Audit
Based on Hierarchal Multi-Party State Channel

Jing Chen , Xin Chen , Kun He , Ruiying Du, Weihang Chen, and Yang Xiang , Fellow, IEEE

Abstract—Audit log contains the trace of different activities in computing systems, which makes it critical for security management,

censorship, and forensics. However, experienced attackers may delete or modify the audit log after their attacks, which makes the audit

log unavailable in attack investigation. In this article, we focus on the log integrity audit in the same domain, in which a number of

servers update audit logs for a single or several organizations as an alliance. We propose a distributed efficient log integrity audit

framework, called DELIA, which employs the distributed ledger technique to protect audit information, and utilizes the idea of state

channel to improve the throughput of distributed ledger. To generate stable state from the rapidly-updated logs in the domain, we

propose a log state generation scheme, which not only generates state suitable for audit logs, but also enables mutual supervision

within the domain. To overcome the high latency in existing state channel schemes, we propose a hierarchal multi-party state channel

scheme, which makes the latency in our framework independent of the number of servers in the domain. We implement DELIA on

Ethereum and evaluate its performance. The results show that our framework is efficient and secure in practice.

Index Terms—Audit log, integrity, blockchain, state channel

Ç

1 INTRODUCTION

AUDIT log is a set of security-relevant chronological
records, that can be used to reconstruct the events of a

computing system for intrusion detection and digital foren-
sics. Especially, organizations usually take advantage of audit
logs which are generated from a number of servers to detect
attacks. Those servers (e.g., web server, firewall, and intrusion
detection system) form a domain in an organization. Research-
ers have shown that by employing attack investigation tech-
nique, such as causality analysis, administrators can trace
back many attacks by audit logs, even Advanced Persistent
Threat (APT) [1], [2].

However, experienced attackers may delete or modify
audit log to hide their tracks and hinder the attack investiga-
tion [3], [4] by launching penetration testing tools like Meta-
sploit [5], or downloading a simple script [6], [7], [8], [9].
Attackers regularly engage in anti-forensic activities to cover
up their attacks. Log tampering is reported as the top evasion
tactic by 87 percent of incident response specialists [10]. In
2017, criminals exploited Amazon’s multiple vulnerabilities
to defraud users, and then they tampered with logs, which

makes reverse trace very difficult for Amazon [11]. In 2020,
since audit logs were erased, Nintendo realized that it was
attacked by hackers until many users complained on the
forum about the loss of their account funds [12]. Obviously,
the integrity of audit log is a key factor which needs to be
guaranteed. Most of traditional audit methods store logs
locally in a centralized mode. From the perspective of attack-
ers, once they can compromise a target machine, it is easy for
them to delete ormodify logswhich are the last line of defense
to record actual operational behaviors. As a result, attackers
leave no suspicious traces and the victim is hard to realize it
has been attacked. Themain reason is that the trust of the sys-
tem depends on a single and local server which cannot prove
the innocence for itself. To solve this problem, trust dispersion
is a good choice.

One option is to outsource the audit log to the cloud, and
employ Provable Data Possession (PDP) or Proof of Retriev-
ability (PoR) to examine the log integrity [13], [14]. Unfortu-
nately, since audit log are rapidly-updated, those approaches
may introduce unaffordable time for verifying the log integ-
rity, and outsourcing audit data to a third party poses a certain
threat to sensitive logs [15]. Another option is to employ the
distributed ledger technique, whose security depends on the
majority of nodes but not a single one [16]. In [17], [18], and
[19], audit logs or the checksums are stored in a distributed
ledger. When an auditor needs to examine the log integrity, it
compares the ledger data with the audit log to estimate
whether the audit log has been modified. Since existing dis-
tributed ledger techniques require that every record (or the
checksum of the record) is spread to the whole network and
stored to the ledger by all participants’ consensus, those solu-
tions are inefficient in handling rapid log update events in
practice.

A prominent approach to handle the rapidly-updated
events in distributed ledger is state channel [20], which is a
contract instantiated between two parties. It allows the two

� Jing Chen is with the Key Laboratory of Aerospace Information Security
and Trusted Computing, Ministry of Education, School of Cyber Science
and Engineering, Wuhan University, Wuhan 430072, China.
E-mail: chenjing@whu.edu.cn.

� Xin Chen, Kun He, and Weihang Chen are with the School of Cyber Sci-
ence and Engineering, Wuhan University, Wuhan 430072, China.
E-mail: cvb543709193@sina.com, {hekun, 2019202210085}@whu.edu.cn.

� Ruiying Du is with the Collaborative Innovation Center of Geospatial
Technology, Wuhan 430072, China. E-mail: duraying@126.com.

� Yang Xiang is with the School of Software and Electrical Engineering,
Swinburne University of Technology, Hawthorn VIC 3122, Australia.
E-mail: yxiang@swin.edu.au.

Manuscript received 24 Sept. 2020; revised 2 May 2021; accepted 21 June 2021.
Date of publication 25 June 2021; date of current version 2 Sept. 2022.
(Corresponding author: Kun He.)
Digital Object Identifier no. 10.1109/TDSC.2021.3092365

3286 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

1545-5971 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0002-4321-854X
https://orcid.org/0000-0002-4321-854X
https://orcid.org/0000-0002-4321-854X
https://orcid.org/0000-0002-4321-854X
https://orcid.org/0000-0002-4321-854X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0001-5252-0831
https://orcid.org/0000-0001-5252-0831
https://orcid.org/0000-0001-5252-0831
https://orcid.org/0000-0001-5252-0831
https://orcid.org/0000-0001-5252-0831
mailto:chenjing@whu.edu.cn
mailto:cvb543709193@sina.com
mailto:hekun@whu.edu.cn
mailto:2019202210085@whu.edu.cn
mailto:duraying@126.com
mailto:yxiang@swin.edu.au

parties at a time to collaboratively maintain a state (e.g.,
transactions) off-chain. When this approach is applied to
the log integrity audit, we can view all the interactive
behaviors of the two servers of the same domain within a
period of time as a state, which includes the log update,
message signature verification, and etc. Since the state is
maintained off-chain, the on-chain efficiency is improved.
Intuitively, a multiple-party state channel is needed for flex-
ible and rapid interaction combination with different parties
in practice. Unfortunately, existing multi-party state chan-
nel schemes are exposed to the following two challenges.

The first challenge concerns the state generation, called
state instability. We observe that audit logs are rapidly-
updated in a domain, which makes existing multi-party state
channel schemes difficult to determine the current state of the
domain. The second challenge concerns the delay of consis-
tency in the domain, called linear latency. Even if the state of
the domain is determined, existing multi-party state channel
schemes require each participant to generate a signature on
the state to reach a consensus. This mechanism induces that
the system latency grows linearly with the number of partici-
pants inmulti-party state channel.

In this paper, we aim to propose a Distributed Efficient
Log Integrity Audit (DELIA) framework, which guarantees
the integrity of audit logs in a domain. Our framework ben-
efits from the distributed ledger technique to protect the
verification information of audit logs. First, we design the
state generation and verification method of audit log based
on state channel. Then, we make state channel suitable for
large-scale data operations through our improvement of
state channel technology. In summary, we make the follow-
ing contributions.

1) To the best of our knowledge, it is the first work to
propose a Distributed Efficient Log Integrity Audit
(DELIA) framework, which provides mutual super-
vision within a domain. Through our design, log
deletion and modification can be detected efficiently
by either the servers in the domain or an external
auditor.

2) To solve the state instability challenge, we propose a
Log State Generation scheme, called LSG. In LSG,
we design a number of data structures to represent
the current state of the audit logs in a domain. We
also propose a verification method over these struc-
tures to enable quick integrity verification within the
domain.

3) To solve the linear latency challenge, we propose a
Hierarchal Multi-party State Channel scheme, called
HMSC. In HMSC, all operations for states only
induce tiny latency, which is close to constant level.

4) We implement a prototype on Ethereum to evaluate
the performance of our DELIA framework in prac-
tice. The experimental results show that DELIA is
efficient and effective.

2 PROBLEM STATEMENT

2.1 System Model

In our system, there are three kinds of entities: a number of
servers which consist of LSG andHMSCmodules, an auditor,

and a distributed ledger which is maintained by a number of
ledger nodes, as shown in Fig. 1. Considering the sensitivity
of logs, all participants in different entities should be authenti-
cated and authorized and to form an alliance in the same
domain.

The server updates audit logs and interacts with other
servers in the domain. The auditor can censor all audit logs,
local state information, and the HMSC instance in distrib-
uted ledger automatically in cycles. The distributed ledger
pre-deploys the HMSC contract and maintains the submit-
ted state in a HMSC instance by all the ledger nodes.

2.2 Threat Model

� Network monitoring attack: Attackers can eaves-
drop, delete or modify data transmitted between the
log servers and distributed ledger nodes.

� Compromise attack: Attackers can compromise minor-
ity servers in the domain. In another words, most of
participants in different entities of the domain are
honest.

� Sybil attack: Attackers may leverage multiple forged
identities to induce calculation errors and informa-
tion inconsistency in the network.

� Denial of Service (DoS) attack: Attacks can be launched
at anytime after initialization, and attackers may cause
block access to distributed ledger.

However, we assume that cryptographic algorithms are
secure in finite polynomial time, which means that attackers
cannot forge/tamper signatures of encrypted messages
without the corresponding keys.

2.3 Design Goals

� Mutual supervision.The integrity of audit logs is
supervised mutually among the servers and distrib-
uted ledger nodes in a domain. It allows collabora-
tive attack investigation in that domain.

� State stability.The state is generated stably from the
rapidly-updated audit logs on various servers. More-
over, the state integrity can be efficiently verified
within the domain.

� Low latency.The latency in reaching a consensus on a
state is independent of the number of participants in

Fig. 1. System model.

CHEN ETAL.: DELIA: DISTRIBUTED EFFICIENT LOG INTEGRITYAUDIT BASED ON HIERARCHAL MULTI-PARTY STATE CHANNEL 3287

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

state channel if there is no dispute. Moreover, the
dispute can be resolved efficiently.

� Offline process.The disconnection of any server can be
detected, and the security of its audit logs can be
guaranteed during offline period.

2.4 Notation

To facilitate the understanding, we summarize the main
notations in this paper in Table 1.

3 DELIA FRAMEWORK

3.1 Overview

The Distributed Efficient Log Integrity Audit (DELIA)
framework is a three-layer architecture including data layer,
network layer, and audit layer, as shown in Fig. 3.

In the data layer, we design data structures used in follow-
ing layers. In the network layer, we show Log State Generation
(LSG) scheme, which can handle rapidly-updated audit logs
in the domain, and integrate the LSG scheme with the distrib-
uted ledger by ourHierarchal EfficientMulti-party State Channel
(HMSC) scheme. In the audit layer, we integrate the distrib-
uted ledgerwith audit process byHMSC scheme, and present
a verification scheme to check the integrity of audit logs. The
interaction processes are shown in Fig. 4.

3.2 Data Layer

To handle rapidly updated audit logs in the domain, we
introduce three data structures in data layer: LogCache-
Queue, LocalState, and GlobalState. To illustrate
these data structures, we provide a four-sever example in
Fig. 2. The detailed design is as follows.

1) LogCacheQueue: Since the audit logs are rapidly-
updated, we can neither store all of them in the distributed
ledger, nor process them in the state channel directly. To
tackle this issue, we collect the audit logs over in the form of
a batch which has a fix number of records and is treated as a
whole. LogCacheQueue is a local hash set, which stores
different hash values of each server’s log records in a batch.
Let pi (i 2 ½1; n�, where n is the number of servers) be the ith
server in a domain and dpi;� be the �th log record in server
pi. LogCacheQueue, cpi;li

denotes the hash set of the log
records of server pi in a batch. More specifically

cpi;li
¼ fHðdpi;liuþ1Þ; . . . ; Hðdpi;ðliþ1ÞuÞg; (1)

where li is a non-negative integer that denotes the number
of batch on the ith server, u is a global parameter that indi-
cates the number of log records in a batch, and Hð�Þ is a
cryptographic hash function.

2) LocalState: LocalState is a hash chain which
links the data of LogCacheQueue in the order of batches.
To support state channel technique, LogCacheQueue on a
server needs to be transformed into LocalState, which
not only contains the information of current batch in Log-

CacheQueue, but also binds all previous batches of audit
logs. Let rootpi;li be the root of the Merkle hash tree con-
structed from a LogCacheQueue cpi;li

. We define Local-

State as follows:

vpi;li ¼
Hðrootpi;0Þ if li ¼ 0;
Hðrootpi;likvpi;li�1Þ if li > 0:

�
(2)

TABLE 1
Notations

Notation Meaning

n the number of log servers

pi the ith log server

dpi;� the �th record of the ith log server

cpi;li
LogCacheQueue generated by ith server in lith
batch

u the number of log records in a batch

vpi;li hash chain of logs in the lith batch of ith server

Gn nth global state recording all LocalState in a
domain

GGx
n nth global state with signatures from all participants

in Gx

sid the unique identity of a state channel instance

G a state channel instance stored in distributed ledger

b the number of state in a round of HMSC

D the number of layer in HMSC

Fig. 3. Distributed efficient log integrity audit framework.

Fig. 2. Transformation among three data structures.

3288 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

3) GlobalState: GlobalState is an array recording
the LocalState of all servers in a domain. To describe the
current state of the domain, we denote GlobalState as

Gn ¼ ðvp1;l1 ; . . . ;vpn;lnÞ; (3)

where n is its serial number which update a snapshot. That
means, GlobalState records is a snapshot of current
LocalState data of all the servers periodically.

3.3 Network Layer

The network layer is mainly responsible for secure data
interaction under the supervision of the distributed ledger
to ensure the integrity of audit logs. Note that if log records
are only generated by a server, attackers may delete or mod-
ify these data in a batch. To tackle this issue, we utilize the
collaborative monitoring and a real-time broadcasting
method among all servers in LSG, which prevent attackers
from disturbing the generation of audit logs.

Network layer refers to two phases: LSG phase and HMSC
phase. LSG phase consists of two stages: log serialization and
state generation.HMSC consists of three stages: off-chain state
confirmation, on-chain state update, and off-line processing.
LSG phase is only running at the network layer and HMSC
phase is realized by the cooperation of network layer and
audit layer.

LSG phase (stage�1 -�2)
�1 LogSerialization

To prevent attackers from deleting or modifying audit
logs, every server in the domain should maintain the hash
values of other servers’ log records in a batch to form the
data in LogCacheQueue. Specifically, the server pj main-
tains fcp1;l1

; . . . ;cpn;lng. The details of the log serialization
stage is as follows.

� The server pi broadcasts Hðdpi;�Þð� 2 ½liu þ 1; ðli þ
1Þu�Þ to other servers in the domain once the �th log
record is generated.

� When the server pj receives Hðdpi;�Þ, it stores this
item in its local LogCacheQueue.

� The server pi also stores this item in its local
LogCacheQueue.

Algorithm 1. Global State Generation

procedure GlobalGenrootpi;li ; Gn�1
Parse Gn�1 as ðvp1;l1 ; . . . ;vpi;li�1; . . . ;vpn;lnÞ;
vpi;li Hðrootpi;likvpi;li�1Þ; " Eq. (2)
Gn ðvp1;l1 ; . . . ;vpi;li ; . . . ;vpn;lnÞ; " Eq. (3)
return Gn;

Algorithm 2. State Verification

procedure StateVerifycpi
; rootpi;li ; Gn�1; Gn

root0pi;li MHTGenðcpi
Þ;

if root0pi;li 6¼ rootpi;li then
return 0; " invalid root

G0n GlobalGenðrootpi;li ; Gn�1Þ
if G0n 6¼ Gn then
return 0; " invalid global state

return 1; " valid global state

�2 StateGeneration

Once the server pi has generated u records in its lith batch
which means that the batch is full, it generates a new Glob-
alState Gn. MHTGenð�Þ denotes a function that takes cpi;li

as
input, and outputs the root value rootpi;li of the Merkle hash
tree as LocalState.

� The server pi invokes MHTGenðcpi;li
Þ and obtains

rootpi;li . Then, it invokes Algorithm 1 to obtain
GlobalState Gn, where Gn�1 is the latest Global-
State. Finally, pi broadcasts rootpi;li and Gn to other
servers in the domain.

� When the server pj receives rootpi;li and Gn, it calls
Algorithm 2 to verify rootpi;li and Gn, where cpi;li
and Gn�1 are maintained locally on pj. If they are
invalid, pj broadcasts a failure notification and termi-
nate this stage. Otherwise, its local Gn�1 is replaced
by Gn. Note that this stage provides mutual supervi-
sion within the domain.

HMSC phase (stage 3-5)
�3 Off-ChainStateConfirmation: If Algorithm 2 passes, all

servers try to reach a consensus on Gn in the domain. This
process is to confirm the state Gn generated by LSG phase,
and it is implemented by the state confirmation protocol of
HMSC described in Section 4.3.2.

Algorithm 3. Log Verification

procedure LogVerifyfdpi;1; . . . ; dpi;�g; fG1; . . . ; Gng
ErrList ;; " batches in which audit log is deleted/

forged/tampered
k 1; l 0;
for k � n do
Parse Gk as ðvp1 ;l1 ; . . . ;vpi;li ; . . . ;vpn;lnÞ;
for l � li do
c fHðdpi;luþ1Þ; . . . ; Hðdpi;ðlþ1ÞuÞg; " Eq. (1)
root MHTGenðcÞ;
if l ¼¼ 0 then
v HðrootÞ;

else
v HðrootkvÞ; " Eq. (2)

if v 6¼ vpi;li then
ErrList ErrList [flig;

v vpi;li

return ErrList;

�4 On-chain StateUpdate: When the off-chain state channel
has been created, the servers as participants in the state
channel can record their own operations in audit logs auton-
omously. To maintain the synchronization between the dis-
tributed ledger and the state channel, we could periodically
update the state information by state update protocol of
HMSC described in Section 4.3.3.
�5 Offline-processing: When a server is disconnected from

networks or the server is down, we need to ensure that our
framework still works properly and the data of offline
nodes can be protected. It consists of two parts: Offline
Detection and Online Notification.

� OfflineDetection: Once a server loses contact with other
servers in this domain, this process is triggered. Other
servers confirm this server offline through the inquiry
mechanism, and ensure the information of its log

CHEN ETAL.: DELIA: DISTRIBUTED EFFICIENT LOG INTEGRITYAUDIT BASED ON HIERARCHAL MULTI-PARTY STATE CHANNEL 3289

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

integrity previously stored in the state channel cannot
be tampered. It is implemented by the offline state con-
firmation protocol of HMSC in Section 4.3.5.

� OnlineNotification: Once a server comes back, this
server sends notifications to other servers in the
domain. Online state confirmation in Section 4.3.5 is
called to make the server rejoin the state channel.
After the offline server becomes online, this server
needs to synchronize all the GlobalState data and
LogCacheQueue data from other servers in the
domain.

3.4 Audit Layer

The audit layer is designed to provide audit function, which
consists of three stages: audit initialization, integrity audit,
and audit closure. Specially, as shown in Fig. 4, HMSC phase
refers to the first and third stages.
�1 Audit Initialization. In this stage, the servers in a domain

enable the audit function including deployment of log col-
lector, log preprocessor and integrity verification modules.
Then, the servers in a domain can initialize different state
channel instances according to the network division,which
is implemented in instance initialization protocol of HMSC
described in Section 4.3.1. This protocol is to create a state
channel instance or form a higher layer state channel
instance for state interactions between servers and distrib-
uted ledger.
�2 Integrity Audit. At any time, an external auditor could

access the audit phase to check the integrity of audit logs on
a server. To examine the log integrity on pi, the auditor first
obtains fdpi;1; . . . ; dpi;�g from pi and the states fG1; . . . ; Gng
from the distributed ledger, and then calls Algorithm 3. The
output of Algorithm 3 is the batches in which audit logs are
deleted/forged/tampered. In other words, the log integrity
audit is passed if and only if the output of Algorithm 3 is
null.
�3 Audit Closure. When the servers do not need log integ-

rity protection or the participants of the alliance do not need
mutual supervision, log collector, log preprocessor and
integrity verification module in each server are closed, and
the instance closure protocol of HMSC is invoked to disable
the audit function in the state channel, which is imple-
mented by Section 4.3.6.

4 HIERARCHAL MULTI-PARTY STATE CHANNEL

4.1 Motivation

The multi-party state channel brings a new perspective to
the expansion of distributed ledger. To confirm a state Gn,
every participant pi should make a signature Spi for the
state. The current multi-party state channel is composed by
multiple two-party state channels, which means the com-
munication and computation costs linearly increase accord-
ing to the number of involved participants. Thus, when the
scale of participants expands, the verification time and sys-
tem latency will become unacceptable.

Moreover, since the initilization and closure of each state
channel need to consume certain resources, we need to
avoid execute these operations frequently. Obviously, if we
can find a non-serial model to create multi-party state chan-
nels and combine them dynamicly, the system efficiency
will be improved significantly.

However, the non-serial model also induce some prob-
lems. In the state channel, the state confirmation need the
consensus of all members. Due to the network delay, it eas-
ily leads to inconsistencies, called state conflict.

To describe this problem, we illustrate an example that a
state channel has four participants p1, p2, p3, and p4 as in
Fig. 5. Suppose p1 generates a new state Gn and requests a
signature Sp2 from p2. Simultaneously, p4 generates a new
state G0n and requests a signature Sp3 from p3. When p3
receives ðGn; Sp1 ; Sp2Þ, p3 has already owned another state
ðG0n; Sp4 ; Sp3Þ. These two states have the same serial number
and the same signature quantity. For p2, it has the same
problem. As a result, p2 and p3 confuse to decide the correct
state, which leads to state conflict.

Therefore, how to design an efficient, robust, and secure
multi-party state channel is still a open problem which is
worth studying. Following the principle of cooperative
autonomous, we need to design a non-serial multi-party
state channel. To avoid the state conflict, a rotating leader is
elected to organize the state channel. For the requirement of
dynamic combination, we form a hierarchical channel
through the leader to improve the joint efficiency and
enhance the scalability.

4.2 Overview of HMSC

To solve the above mentioned problems, we design an effi-
cient hierarchal multi-party state channel scheme, called

Fig. 4. Entity interactions in network layer and audit layer.
Fig. 5. Consistency problem in the multi-party state channel.

3290 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

HMSC. Specially, it is implemented by a smart contract
which consists of executable codes pre-deployed on a dis-
tributed ledger. In HMSC, we exploit a state channel con-
tract (SCC) includes six protocols: instance initialization
(Init), state confirmation (Confirm), state update (Update), dis-
pute resolving (DisputeResolving), instance closure (Close),
and offline resolving (OfflineResolving), as shown in Fig. 6.

Since state channels are temporary unions, which are
composed by parts of participants, to finish special tasks,
we can launch multiple state channels simultaneously.
When different participants need to cooperate with each
other, i.e., joint audit, the efficient way is to form federal
state channels but not close the old ones and create a new
one each time. As shown in Fig. 7, it is an example with two
state channels G1 (p1, p2, p3) and G2 (p4, p5, p6). Because each
state channel is independent and autonomous, the leader
selected by each state channel is used to build a hierarchical
state channel and coordinate internal interactions. When G1

and G2 need to be federated, as a hierarchical structure, their
leaders negotiate a temporary federation G3. As a result, G3

can manage six participants p1, p2; . . . ; p6 uniformly which
not only promotes efficiency, but also improves the consen-
sus strength. In G3, each state should be approved in the
whole federation which means that more monitors are
involved.

4.3 Protocol Design

4.3.1 Instance Initialization Protocol

This protocol aims to create a state channel instance, which
ensures that pre-negotiated participants could join the same
instance. Suppose p1, ..., pn intend to join the same instance.
Let ðGen;Sign;VrfyÞ be a digital signature scheme (e.g.,
ECDSA), in which Gen is the key generation algorithm, Sign
is the signing algorithm, and Vrfy is the signature verifica-
tion algorithm. Each participant pi has its own public key
PKpi and private key SKpi that are generated by Gen. Let
ðGn; SpiÞ be the state and signature of the state using SKpi .
The participants could send a message InitMsg composed of
P ¼ fPKp1 ; . . . ; PKpng to SCC. Then, a state channel instance
G :¼ fsid;P; G;OffList;NewLeader;Parent;ChildListg is created
in SCC, where sid represents the unique identity of the
instance, P is the set of all participants’ public keys in this
instance, G represents the latest state in the instance, OffList

is a list of offline servers, NewLeader is a reserved field for
dispute resolving protocol, Parent reprensents the identity
of parent instance, and ChildList reprensents the identity list
of all child instances. Specially, OffList, NewLeader, Parent,
and ChildList are null in initialization process.

To federate multiple state channels, a parent state channel
needs to be generated. This process could be executed in ini-
tialization or subsequent processes. Suppose G1, ..., Gm intend
to form a hierarchal state channel, then their leaders should
send a message FederateMsg composed of ðsid1; . . . ; sidm;P1;
. . . ;PmÞ to SCC. After that, a parent state channel instance Ga :
¼ fsida;Pa;G;OffLista;NewLeadera;Parenta;ChildListag is stored
in SCC, where sida is randomly generated, Pa are the set of
participants’ public keys in child state channels, Parenta is
null, and ChildLista includes sid1; . . . ; sidm which belong to its
child state channel instances. In Fig. 7, we show a two-layer
example of HMSC. p1; p2; p3 form G1, p4; p5; p6 form G2, and G3

is federated by G1 and G2. The state channel instance at top of
HMSC is called root state channel instance.

4.3.2 State Confirmation Protocol

In this protocol, participants aim to reach a consensus on a
given state Gn. In HMSC, every instance runs the state con-
firmation protocol by rounds. To solve the state conflict
problem, there would be a leader to manage the state chan-
nel in a round. Specially, the leader responds to coordinates
other participants to generate a signed round state and b

no-signed round states (b is not fixed in different state chan-
nel instances). The difference of these two types of round
states is that the former needs the signatures of all partici-
pants and the latter only needs the signature of the leader.
We use GGx

n to represent signed round state, which includes
a state generated in Gx with signatures from its participants
or leaders of its child state channel instances. Obviously, the
signed round state is more secure but the no-signed round
state is more efficient. To obtain better synthetic ability, we
use the former as secure anchor and the latter as temporary
memory point. Once any participant finds abnormal situa-
tion, it can call the dispute resolving protocol described in
Section 4.3.4 to roll back to the latest secure anchor and
exclude the inconsistent participant. The state confirmation
protocol in a round consists of three processes:
�1 Leader Election: At the beginning of a round in every

state channel instance, a leader should be elected. To achieve
election fairness, every participant should have the same
opportunity as the leader. The system chooses the participant

Fig. 6. An overview of HMSC.

Fig. 7. A two-layer example of HMSC.

CHEN ETAL.: DELIA: DISTRIBUTED EFFICIENT LOG INTEGRITYAUDIT BASED ON HIERARCHAL MULTI-PARTY STATE CHANNEL 3291

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

with the minimum value of PKpi in P as the leader. This
leader will not join the election of next round, and the next
leader is the participant with the next smallest PKpi inP. If no
such participant exists, the system starts over from the mini-
mumvalue inP.
�2 SignedRound State Generation: In this process, there are

four steps. To illustrate clearly, we take an example of a state
channel instance formed by six servers as shown in Fig. 8,
while p1 is elected as the leader in G3 which is root state chan-
nel instance, p2 is leader of G1, and p4 is leader ofG2.

Step 1 : The participant p6 in G2 generates Gn and sends it
to its leader p4. Step 2: This leader p4 signs ðGnjp4Þ and
broadcasts ðGn; Sp4Þ to all its participants or leaders of state
channel instances in its ChildList. All participants or leaders
of child state channel instances verify the leader’s signature
and generate their own signatures. Step 3: p4 collects signed
states which include signatures from all participants or
leaders of child state channel instance. Then p4 sends G

G2
n to

its parent leader, and this step stops until the GG2
n reaches

root state channel instance G3. Step 4: The leader of root
state channel instance p1 distributes this signed round state
GG2

n to the participants in all its subordinative state channels
by this step recursively.
�3 No-signed Round State Generation: Once the signed

round state generation is completed, the leader p4 in this
state channel instance can still conduct b no-signed round
states in the rest of this round. Every state channel instance
could have different value of b. Every leader in HMSC
receiving a no-signed round state sends it to the leader of
root state channel instance recursively. When the leader of
root state channel instance approves a no-signed round
state, it broadcasts the state to all participants through its
descendant leaders.

Let Gn� be the latest state conducted by p1, and Gn0 be the
new state from p1. If n

� < nþ b and n0 is equal to n� þ 1, p1
signs Gn0 with its private key SKp1 and broadcasts ðGn0 ; Sp1Þ
to all participants.

When other participants receive ðGn0 ; Sp1Þ, they can check
whether the serial number of their local latest state is equal to
n0 � 1. If the equation does not hold, it means the participants
are not synchronized and they need to interactwith their lead-
ers to synchronize all the states to their local storage.

4.3.3 State Update Protocol

In this protocol, the state changed by participants can be
recorded to the distributed ledger. Only signed round states
can be accepted by the distributed ledger, and the no-signed
round states are stored off-chain as temporary cache. A par-
ticipant could submit a signed round state to its state chan-
nel instance. Let Gx be a state channel instance in HMSC,
numoff is the number of addresses stored in OffList, and GGx

n

is the signed state submitted to the distributed ledger. If
ChildList of Gx is null, num is the number of its participants.
Otherwise, num is the number of entries in ChildList. The dis-
tributed ledger stores this state GGx

n , if the following
StateUpdateRules are satisfied.

1) n > n�, where n� is the serial number of the latest
state conducted by the root channel’s leader;

2) 8 PKpi in OffList, pi’s LocalState data vpi;li in Gn

must be the same with vpi;l
�
i
in Gn� ;

3) There should be num� numoff signatures in GGx
n .

For every signature Spi in GGx
n , the output of

VrfyðPKpi ; SpiÞ should be accepted, and there must be
one signature which contains the leader’s public key;

4) If its ChildList is not null, the minimum serial number
of state stored in its child state channel instances
should be less than n or it is null.

The first rule ensures that an old state cannot be updated to
the instance. The second rule guarantees that an offline serv-
er’s LocalState in a signed round state could not be
changed in instance. The third rule requires that each online
participant in the state channel Gx must sign on the consensus
state Gn, which ensures that Gn has reached in consensus off-
chain. The fourth rule checks if the serial number n of the
updating state is bigger than the minimum serial number of
Gx’s child state channel instances. If not, the state stored in
Gx’s child channels who has a bigger serial number should be
set null. The reason is that if any serial number of state stored
inGx’s child state channel instances is bigger than that of itself,
itmeans that it is an old state, which ismeaningless.

4.3.4 Dispute Resolving Protocol

This protocol aims to prevent malicious participants from
updating or generating old and invalid states. There are
two malicious situations. The first situation is that some par-
ticipants except the leader are malicious. The second situa-
tion is that the leader is malicious, even colludes with a
small number of other participants. The first situation is
easy to be excluded because the leader could detect the
malicious behaviors. Then, we focus on analyzing the sec-
ond situation which is more pervasive.

Since the no-signed round state is only signed by the
leader, it seems that a malicious leader can violate the proto-
col unconstrainedly. For example, the malicious leader may
collude with another participant, and only process the state
generated by that participant while ignoring others’ states.
To resist malicious leaders, we design the dispute resolving
protocol to ensure that the states updated in state channel
are in line with all participants’ consensus and cannot be
tampered by the leader alone.

For malicious leader, there are mainly two kinds of dis-
putes, one is against malicious leader of state channel instance

Fig. 8. Signed round state generation.

3292 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

whose ChildList is null, the other is against malicious leader of
state channel instance whose ChildList is not null. We choose
checkpoints from anchor points which are those signed round
states to roll back the state channel instance to a safe state. The
specific checkpoint selection algorithm is shown inAlgorithm4
which takes all states as input and the serial number of state in
checkpoint as output. To execute the dispute resolving proto-
col, a participant submits a message DisputeMsg composed of
signed round state in the checkpoint as the request to change
the leader. This request is considered valid, if StateUpdate
Rules are satisfied.

Algorithm 4 is able to handle the two kinds of disputes
mentioned above (ChildList is null or not null). We present
four cases of these two kinds in Fig. 9, in which the white
circle means the no-signed round state which does not need
the signatures of all participants and the blue square means
the signed round state which needs the signatures of all par-
ticipants. Suppose there is a dispute against the leader of
state channel Gx:
�1 Gx has no child channels: The checkpoint should be the

latest signed round state of Gx, corresponding to lines 3 to 8
in Algorithm 4. According to our state confirmation proto-
col in Section 4.3.2, the latest signed round state generated
by Gx whose ChildList is null should be signed by all partici-
pants in Gx. The malicious leader only colludes with a small
number of participants in our assumption, so this state con-
tains signatures from the honest non-leader participants
and is correct. In Fig. 9a, there is only one state channel G
and GG

4 is the latest signed round state. In Fig. 9b, G1 and G2

are child channels of G3, while the dispute is against G1.
State G

G1
3 is G1’s latest signed round state and should be

selected as a checkpoint.
�2 Gx has child channels: There are two ways to select

checkpoints, and we use the better one.
Using Own State. Select the second last signed round state

generated by Gx as the checkpoint, the process is correspond-
ing to lines 10 to 16 inAlgorithm 4. In Fig. 9c, Gx isG3 and it has
two child channels G1 and G2. Recall our state confirmation
protocol in Section 4.3.2, the signed round states generated by
parent channel G3 (G

G3
2 and G

G3
5) do not include signatures of

non-leader participants. In our assumption, the leaders are
malicious, so we cannot guarantee the correctness of G

G3
2 and

G
G3
5 . In addition, the leader generatedG

G3
5 is having a dispute

now, therefore we consider G
G3
5 is corrupted and cannot be

selected as a checkpoint. However, the leader between G
G3
2

and G
G3
5 (which is different from the leader who generated

G
G3
5 , because the leader should be re-elected before generating

the signed round state) does not gain any dispute, so we
believe the leader generated G

G3
2 is honest and G

G3
2 could be

used for resolving dispute.
Using Child Channel State. For every child state channel of

Gx, we find out its latest signed round state. Among these
states, we select the earliest one as a checkpoint, correspond-
ing to lines 17 to 23 in Algorithm 4. In Fig. 9d, Gx is G3 and it
has two child state channels G1 and G2. The latest signed
round state of G1 is G

G1
3 , which means that all participants in

G1 have reached consensus on G
G1
3 and its previous states.

Similarly, G2 also reached consensus on its latest signed round
state G

G2
5 and its previous states. Because G

G1
3 is earlier than

G
G2
5 , all participants of G1 and G2 have reached consensus on

G
G1
3 and its previous states. From the instance initialization

protocol in Section 4.3.1, we know that all participants of G3

come from its child channels G1 and G2, so all participants of
G3 have reached consensus on G

G1
3 and its previous states.

Therefore,GG1
3 can be selected as a checkpoint.

Then, we use the voting mechanism to arbitrate whether
the leader or the dispute initiator is honest. Any participant
in the channel instance can generate a signed voting mes-
sage for the leader or the participant that initiates the dis-
pute by sending DisputeMsg. According to the vote, one
participant between leader and the dispute initiator will be
excluded to ensure that our protocol can continue operating
normally.

Algorithm 4. Checkpoint Selection

1: procedure CheckpointSelectionG1; . . . ; Gn;Gx

2: Parse Gx as ðsidx; . . . ;ChildListxÞ;
3: if ChildListx ¼¼ null then
4: k n;
5: for k 	 0 do
6: k��;
7: if GGx

k exists then
8: return k;
9: else
10: k1 n; k2 n; count 0;
11: for k1 	 0 do
12: k1��;
13: if GGx

k1 exists then
14: countþþ;
15: if count ¼¼ 2 then
16: break;
17: for Gb in ChildListx do
18: k3 n

19: for k3 	 0 then
20: k3��;
21: if G

Gb
k3 exists then

22: if k3 � k2 then
23: k2 k3
24: returnmaxðk1; k2Þ;

If the leader ismalicious, a new leader is selected randomly
in this state channel instance, which could be decided by the
hash of latest block, and its address is stored into NewLeaderx.
Then, all state channel instances in HMSC roll back to this
checkpoint. Then, the next state received by Gx must be Gnþ1
and leader’s signature must be SignðGnþ1jNewLeaderxÞ. In this

Fig. 9. Different dispute situations.

CHEN ETAL.: DELIA: DISTRIBUTED EFFICIENT LOG INTEGRITYAUDIT BASED ON HIERARCHAL MULTI-PARTY STATE CHANNEL 3293

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

process, we lose n� n� states for resolving dispute, we call it
state loss. The corresponding participants can know the new
leader by checking NewLeaderx and continue state confirma-
tion process. After dispute resolved, NewLeaderx will be set
null.

4.3.5 Offline Resolving Protocol

In a real environment, equipment failure or network discon-
nection are common. To deal with this situation, we design
the offline resolving protocol, in which other participants
could also work normally when one participant goes offline.
In our protocol, we use a OffList to record the offline servers.

The detection of offline server has been mentioned in Sec-
toin 3.3, this protocol mainly concerns the communications
between participants and the state channel instance. The off-
line resolving protocol consists of two steps: (1) offline state
update; (2) online state update.

� Offline State Confirmation: The leader broadcasts the
first GlobalState data generated after a participant
goes offline and the hash of its LogCacheQueue data
ðGn;Hðcpi;li

ÞÞ to other participants inP. The other par-
ticipants also inquiry this participant to check if it is
offline. If it passes, a participant replies with its signed
GlobalStatedata. Then the leader collects the signa-
tures from other participants. At last, the leader calls
the state update protocol of HMSC to submit
OfflineMsg composed ofGlobalStatedata and an off-
line tag ðGn; Sp1 ; . . . ; Spi�1 ; Spiþ1 ; . . . ; Spn ;OFFLINE :
ðPKpi ;Hðcpi;p1

ÞÞ.
When the state channel instance receives OfflineMsg,

it first checks if it satisfies StateUpdateRules. Then to
prevent other participants in this state channel from
intentionally excluding this node, it starts a challenge
time which is used for cancelling this offline request.
Specifically, after the state channel receives and checks
OfflineMsg, it waits for one block generation time (block
height could be obtained from the smart contract) to
receive the request from the offline server. After the
waiting time, if the participant is not actually offline, it
could send its signed latest state, ðGn; SpiÞ to state chan-
nel to request cancelling. In thewaiting time, if the state
channel instance does not receive any cancelling mes-
sage, it addsPKpi andHðcpi;li

Þ to its ownOffList. Other-
wise, the offline request does not take effect.

� Online State Confirmation: The leader first broadcasts
the first GlobalState data generated after an offline
participant goes online and collects the signatures
from other participants. Then, the leader calls the state
update protocol of HMSC to submit OnlineMsg com-
posed of GlobalState and an online tag ðGn; Sp1 ;
. . . ; . . . ; Spn ;ONLINE : PKpiÞ. When the state channel
instance receives OnlineMsg, it checks if it satisfies
State UpdateRules. If it passes, this state channel
instance removes the address of offline participant to
its ownOffList. Otherwise, the online request fails.

4.3.6 Instance Closure Protocol

This protocol aims to close a state channel instance, such
that no participant can submit state any longer. Traditional

approach in the two-party state channel scheme is to utilize
an on-chain challenge period. In this period, a state is submit-
ted to the distributed ledger, and is accepted by the distrib-
uted ledger if no newer state is submitted to the distributed
ledger during that period. However, this approach requires
an unaffordablewaiting time.

To tackle this issue, we design an off-chain instance closure
protocol as follows. When a state channel intends to close the
root state channel instance, it generates a state with a special
identifier ðGnjCloseÞ, and requests a signed state as shown in
signed round state generation which has the signatures from
all participants of root state channel instance. When a partici-
pant intends to close the state channel instance which does not
have parent state channel, it could also generate ðGnjCloseÞ,
and requests a signed state as shown in signed round state
generation. Finally, any participant could send a message
CloseMsg composed of ðGnjCloseÞsigned to SCC.

If multiple state channel instances intend to be disassoci-
ated, which means the closure of their parent state channel
instance. The closure process could be done as follows. Let
this parent state channel instance be Ga. Every state channel
instance in ChildList of Ga generates a signed round state on a
new state with a special identifier ðGnci jCloseÞGa . The leader
of Ga collects all these signed round states and sends a
DisassociateMsg composed of ðGG1

n ; . . . ;GGm
n Þ to SCC. SCC veri-

fies these signatures and closes this state channel instance Ga.

5 CAPABILITY AND SECURITY ANALYSIS

Theorem 1. Time complexity of HMSC depends on b and ration
of dispute q. When the b increases and q decreases, the time
complexity convergence to oð1Þ.

Proof. Note that one leader could receive b no-signed
round states and one signed round state. The leader
needs to interact with other participants three times when
generating a signed round state as shown in Fig. 8. While
it only needs one time interaction when generating a no-
signed round state. The main factor for determining the
efficiency of our scheme is the cost of Sign and Vrfy, here
we analyse the times of generating and verifying signa-
tures in our scheme. We define the servers in a state chan-
nel is n, the states processed in a round is bþ 1 and the
round times is r. The average number of signatures per
state could be represented by the sum of number of signa-
tures in case of no dispute and number of signatures in
case of dispute divided by total number of state. In case
of no dispute, the sum of number of signatures is com-
posed of signed round states’ signatures which is rnð1�
qÞ and no-signed round states’ signatures which is rbð1�
qÞ. In case of dispute, the sum of number of signatures is
only composed of signed round states’ signatures which
is rnq. In single HMSC, it could be represent as follow:

T ðnÞ ¼ ðrnþ rbÞð1� qÞ þ rnq

rð1þ bÞð1� qÞ þ rq
¼ nþ ð1� qÞb

1þ ð1� qÞb : (4)

In multi-layer HMSC, D is the number of layer and ni;j is
the number of participants in ith layer and jth state chan-
nel instance. The average number of signatures per state
could be represented by the sum of the average number

3294 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

of signatures per state of all state channel minus their
shared no-signed round states’ signatures

T ðnÞ ¼
XD
i¼1

Xhi
j¼1

ni;j þ ð1� qi;jÞb
1þ ð1� qi;jÞb � 1

� �
þ 1: (5)

It could be seen from above that when the the percent-
age of honest participants decreases, T ðnÞ is nearly close
to n. If there is no malicious participant and b is big
enough, T ðnÞ is close to 1. Note that when the b is large
and malicious participant exsist, it will repeatedly trigger
DisputeResolve, and could bring large state loss and
greatly reduce efficiency of HMSC. tu

Security Goals. We define security goals that guarantee that
an adversary described in the threat model (denoted as A)
cannot affect the update of global states Gn (signed and no-
signed round states), which ensures the integrity of the
audit logs. Let P ¼ fp1; . . .; png be the participants of a
DELIA instance and H ¼ fp j p 2 P ^ p is honestg, we
should defend:

(S1) Network monitoring attack: When all participants
p 2 P are honest, a monitoring attacker A cannot
affect the update of global states Gn.

(S2) Compromise attack: Compromised participants can-
not modify Gn generated by phðph 2 HÞ, nor submit-
ted corrupted states G0n.

(S3) Sybil attack: An attacker A who could disguise as
multiple participants cannot modify Gn generated by
phðph 2 HÞ, nor submitted corrupted states G0n.

(S4) DoS attack: The local state vpi;li of log server pi under
DoS attack will not be tampered by the attacker.

Theorem 2 (S1). Let P ¼ fp1; . . . ; png be the participants of a
DELIA instance, every p 2 P is honest and piði 2 ½1; n�Þ
attempts to submit a global state Gn. Then for a monitoring
adversary A as described in the threat model, the state updated
to the distributed ledger will be Gn exactly.

Proof. In LSG phase, we encrypt data by Transport Layer
Security (TLS) protocol, so that a monitoring attacker A
cannot interfere with the normal state generation process
in LSG phase.

While in HMSC phase, the communication between
distributed ledger node and log servers is transparent,
because these data must be published in distributed
ledger. This means A can get all the signed round
states.

When updating GG
n to distributed ledger, even

though this message is transparent, A cannot modify
the state Gn nor the serial number n directly because he
cannot forge the signatures. If A tries to replace GG

n

with GG
n? (n > n

?
, which means GG

n? is an earlier state
that A could get from previous update), it will be pre-
vented by our state update protocol’s first rule as
described in Section 4.3.3. tu

Theorem 3 (S2). Let P ¼ fp1; . . . ; png be the participants of a
DELIA instance, H ¼ fp j p 2 P ^ p is honestg and jHj >
n=2. Then compromised participants pmðpm 2 HÞ as described
in the threat model cannot modify Gn generated by phðph 2 HÞ
nor submitted corrupted states G0n.

Proof. In addition to the basic monitoring ability, a com-
promised participant pm can forge a state G0 and sign it
with his private key SKpm . But the hash value Hðdpi;�Þ
of log records should be broadcasted immediately at
LSG phase, so every p 2 P could calculate the faithful
state Gn.

The two kinds of malicious behaviour, where the com-
promised participants pm are trying to modify a normal
state Gn or submit a corrupted state G0n, are basically the
same. The only difference is which participant (pm or ph)
submits the state to its leader at the beginning of the state
confirmation protocol. After that, all the processes are
identical, so we treat them as the same situation.

Suppose pm attempts to replace Gn with G0n or submit
G0n.�1 IfGn is a no-signed round state, only the leader of root
state channel instance prld will sign it. Every p 2 P will
store ðG0n; S0prldÞ or ðGn; SprldÞ as temporary cache. Suppose
prld colludes with some other pm(s) and store G0n instead of
Gn. The following state Gnþ1 contains some information
aboutGn. If pm stores . . . ;G0n;Gnþ1; . . . , it will be an error in
audit phase. If pm stores . . . ;G0n; G

0
nþ1; . . . , this incosistency

will be found in the next signed round state update, and ph
can call the dispute resolving protocol as described in Sec-
tion 4.3.4. Then we can use the voting mechanism to
exclude themalicious leader (jHj > n=2 required) and roll
back to a proper checkpoint.
�2 IfGn is a signed round state, it should include signa-

tures from all participants in the channel. As long as
there are honest participants ph in the channel, pm cannot
forge ðG0n; S0phÞ and update G0n. If there is no ph in this
channel and all the leaders are compromised, G0n would
be updated to the distributed ledger, but the leaders will
be re-elected in the next signed round state update and
ph in other channels will find this inconsistency, just like
the situation in �1 . The dispute resolving protocol would
roll back the states to an appropriate checkpoint. tu

Theorem 4 (S3). Let P ¼ fp1; . . .; png be the participants of a
DELIA instance, H ¼ fp j p 2 P ^ p is honestg, jHj > n=2.
Then a Sybil adversary A who could disguise as multiple par-
ticipants cannot modify Gn generated by phðph 2 HÞ nor sub-
mitted corrupted states G0n.

Proof. The basic idea to defeat Sybil attack in DELIA is
identity validation. The instance initialization protocol
described in Section 4.3.1 ensures that only the pre-nego-
tiated participants could join the same state channel
instance, because each pi should send InitMsg containing
all other participants’ public keys to SCC in order to cre-
ate a channel.

Therefore, the Sybil attacker A could only interact
with the state channel instance with the identities of
those participants whose private key has been compro-
mised, which is actually equivalent to the compromise
attack in Theorem 3. If A tries to modify a faithful state
Gn or update a corrupted state G0n, the dispute resolving
protocol will prevent it and exclude the compromised
participants from the state channel. tu

Theorem 5 (S4). Let P ¼ fp1; . . .; png be the participants of a
DELIA instance, A be a DoS adversary with the ability to block

CHEN ETAL.: DELIA: DISTRIBUTED EFFICIENT LOG INTEGRITYAUDIT BASED ON HIERARCHAL MULTI-PARTY STATE CHANNEL 3295

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

access to any log server. Then for an honest log server pi under
DoS attack, A cannot tamper pi’s local state vpi;li .

Proof. If log server pi is attacked by DoS attacks, it cannot
submit signatures in the state confirmation stage. The
leader would know that pi is offline and broadcast the
global state Gn and the hash of pi’s LogCacheQueue

Hðcpi;li
Þ, as described in Section 4.3.5. The state channel

instance will add PKpi and Hðcpi;li
Þ to its own OffList. In

the subsequent update, the second rule of the state update
protocol will ensure that pi’s LocalState data vpi;li in
Gn remains unchanged until the DoS attack on the pi ends
and pi goes online again. tu
If DoS attack is against the distributed ledger nodes, due

to the decentralized characteristic, DELIA could replace the
nodes being attacked by other nodes and log servers could
still communicate with the state channel instance. However,
DoS attacks cannot be defended absolutely. We only guar-
antee that the log records will not be tampered during DoS
attacks, and DoS attacks on minority servers will not stop
the entire system.

6 EVALUATION

6.1 Implementation

To validate our state channel scheme, we develop a prototype
of DELIA, which employs Ethereum 1.8.1 [21] as the distrib-
uted ledger platform. We use solidity to realize our HMSC
contracts on Ethereum, which is the implementation of state
channel on the distributed ledger. Each server in the domain
could communicate with HMSC instance on Ethereum by
web3js APIs. The algorithms and protocols in DELIA are
coded by Java and the communication between two servers is
protected by TLS. The hash function in our prototype is
SHA256. To simplify the log production process and test the
system under different parameters, we use a log reader pro-
gram and public audit log dataset [22] for simulating log gen-
eration. According to this dataset, the total amount of audit
log data is 15.6 GB and the average log record generation rate
is up to 2420 items perminute.

The domain consists of 15 servers with Intel celeron
E4300(2.6GHz) CPU, 8G RAM, and Ubuntu 16.04 64bit
operation system. Moreover, the distribute ledger consists
of 10 servers as the ledger nodes with Inter(R) Xeon(R) CPU
E5-2682 v4 @2.5GHz, 8G RAM, and Ubuntu 16.04 64bit
operation system.

6.2 Result Analysis

6.2.1 Performance of LSG

The first is the analysis of storage efficiency in LSG phase.
Since every server needs to store all LocalState and Glob-

alState data for further verifications, it is necessary to eval-
uate the storage cost on the server side. While the length of
LogCacheQueue is always constant, we don’t consider it in
our evaluation. As shown in Fig. 10a, the storage cost for
LocalState data decreases as u increases. Note that u is the
number of records that are involved in LocalState data
and the total number of records is fixed,whichmeans that big-
ger u implies generating less LocalState data and less stor-
age cost. Fig. 10b shows the storage cost for GlobalState

data in different number of participants in a state channel
instance. Since the server needs to maintain GlobalState

data which consists of all LocalState data from the servers
in a state channel instance, the storage cost grows linearly
with the time duration and the number of participants in a
state channel instance. However, the storage cost for these
two types of data is acceptable in practice. When 15 servers
run for 10 hours generating 2,178,000 log records, there only
takes 7MB storage cost.

The second is the analysis of verification delay in LSG
phase. We evaluate the verification delay of LSG, which
aims to generate LocalState and GlobalState data
from audit logs. Table 2 describes the LocalState data
generation time, which grows with u increasing. This is
because that LocalState data are calculated by the root of
the Merkle hash tree which is generated from u items (see
Eq. (2)). The computation cost is quite small in practice,
which is only 123ms when u ¼ 500.

Once LocalState data are generated on a server,
GlobalState should be generated and verified immedi-
ately. One goal of LSG is to generate stable GlobalState

data, which means that the GlobalState data generation
interval needs to be greater than the state confirmation
time. From Fig. 11a, we can find that the interval time
decreases as u decreases and the number of participants in a
state channel instance increases. The reason is that Local-
State data on a server is generated more frequently when
u decreases, and the generation frequency of LocalState
data increases when the number of participants in a state
channel instance increases. Even if u ¼ 50 and there are 15
servers in a state channel instance, the GlobalState data
generation interval is 1.28s, which is enough for state confir-
mation shown in Fig. 11b and means that our framework
can generate stable GlobalState.

6.2.2 Performance of HMSC

WecompareHMSCwith [23] calledMSC, which is a representa-
tive scheme of multi-party state channel. As shown in Table 3,
ledger means whether the protocol needs to interact with the
distributed ledger directly. Verificiation means the Sign and
Vrfy delays of the signature alogrithm. Communication means
the network delay between servers. Fig. 12a shows the delays
of HMSC and MSC in optimistic state confirmation process,
while there is no dispute. b represents the round number of
no-signed round state in a round. We conduct 100 round state
confirmation processes and find that the delay of HMSCkeeps
stable and the delay ofMSC grows upwith the number of par-
ticipating servers increasing. The reason is that our scheme

Fig. 10. Stroage cost in LGS phase.

3296 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

leverages leader’s unified coordination to instead the linear
validation when the state channel confirms states. Thus,
HMSC is more efficient in optimistic state confirmation pro-
cess. Fig. 12b shows the delays in pessimistic state confirma-
tion process. We can find that the delay of HMSC is much
lower than that of MSC. The reason is that, when a dispute
occurs, HMSC just invokes the voting mechanism among the
participants in the state channel while MSC needs to contact
with the distributed ledger, which induces more time. As a
result, HMSC has obvious advantages in the whole state con-
firmation process which is the most frequent process in multi-
party state channel, thus, HMSC is more suitable for audit sce-
nariowhere states are generated and confirmed frequently.

Then, we evaluate the gas cost (which represents com-
puting resources in Ethereum) in the five on-chain proto-
cols: Init, Update, DisputeResolving, OfflineResolving, and Close,
which need to be executed in Ethereum. From Fig. 13a, we
can find that Init protocol requires more gas than that in other
protocols, since every server in a state channel instance has to
submit its request for joining the HMSC instance. The gas
required in Update and Close protocols are almost the same
and much smaller than that in Init protocol. This is because
only one server needs to send its request to Ethereum in these
two protocols. Although there is also one server that sends its

request to Ethereum in DisputeResolver protocol, the gas
required in DisputeResolver are higher than that in Update. The
reason is that Ethereumneed to select a new leader in this pro-
tocol. At a gas cost of 25 Gwei (which is measurement unit of
gas), Init for a state channel instance of 15 servers would cost
approximately 0.00085 Ether (unit of Ethereum currency),
which equals to $0.178. This implies that our scheme is effi-
cient from the perspective of economics.

Finally,we evaluate the storage cost onEthereumas shown
in Fig. 13b. When DELIA runs for 15 days in a HMSC com-
posed of three state channel instances including 15 servers, it
only takes up 8MB at most. Therefore, HMSC is efficient in
terms of storage requirements in the distributed ledger.

6.2.3 Performance of Log Integrity Audit

Figs. 14a and 14b show the verification time in integrity
audit stage. As shown in from Fig. 14a, verifiaction time
decreases when u increases. As shown in from Fig. 14b, the
ratio of tampered audit logs has limited effect on the verifi-
cation time. The verification time grows linearly with the
size of audit logs, since the auditor has to compute the hash
value of every log record and generate LocalState data

TABLE 2
LocalState Generation Time

u Generation Time (in Millisecond)

50 22
100 35
200 55
500 123

Fig. 11. GlobalState Generation interval and signed round state con-
firmation time.

TABLE 3
Comparison With Previous Multi-Party State Channel

Protocol Dziembowski(2019)[23] Present work

Communication Verification Ledger Communication Verification Ledger

Initialization OðnÞ -
 - OðnÞ p
Optimistic confirmation OðnÞ OðnÞ
 OðnÞ Oð1Þ

Pessimistic confirmation OðnÞ OðnÞ p

OðnÞ OðnÞ

Update - OðnÞ p

- OðnÞ p
DisputeResolving OðnÞ OðnÞ p

OðnÞ OðnÞ p
OfflineResolving - - - OðnÞ OðnÞ p
Closure OðnÞ -
 OðnÞ OðnÞ p

Fig. 12. Delay comparison in state confirmation process.

Fig. 13. Performance of HMSC.

CHEN ETAL.: DELIA: DISTRIBUTED EFFICIENT LOG INTEGRITYAUDIT BASED ON HIERARCHAL MULTI-PARTY STATE CHANNEL 3297

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

from these hash values. The most time-consuming part in
integrity audit stage is the generation of LocalState data.
Since every LocalState data is generated based on the pre-
vious one, the computation cannot be performed in parallel.

6.2.4 Performance of Voting Mechanism

In state confirmation process, we employ a votingmechanism
to arbitrate whether the leader or the dispute initiator is hon-
est. In this part, we evaluate the delays of voting mechanism
from two aspects: communication and computation.

Fig. 15 indicates that the computation delay raises and
the communication delay keeps stable with the increase of
the number of participating servers. The reason is that the
offline resolving protocol just involves the servers who have
the same leader. Each server in the same state channel
broadcasts it’s DisputeMsgs, collects and responses Dispu-
teMsgs, individually. Even if the number of participating
servers reaches 50, the communication delay is less than 120
ms and the computation delay is less than 100 ms. Thus, the
voting process is efficient and it can effectively support our
offline resolving protocol.

7 RELATED WORK

7.1 Log Integrity Audit

Provable Data Possession(PDP) [13] and Proof of Retriev-
ability (PoR) [14] are designed for examining the integrity of
archived data, such as audit logs . These methods require
the administrator to outsource audit logs to a third party
(e.g., a cloud server) and provide probabilistic proof that
the third party stores the files. Armknecht et al. [24]
extended PoR scheme, which enables an external auditor to
execute the PoR protocol with the cloud on behalf of the
data owner. Hanling et al. [25] pointed out that the size of
remote storage can be the most expensive factor, thus they
proposed a simple PoR scheme to minimize storage over-
head. Liu et al. [26] exploited disconnected ORAM opera-
tions and designed a two-layer encryption scheme to
reduce evict cache size from GB/MB to KB level. Guo et al.
[27] presented a communication-efficient and fast protocol
for verifiable aggregation. However, the sensitive logs may
be leaked at the third party in these solutions. Liu et al. [28]
proposed a novel message-locked integrity auditing scheme
for encrypted data, which solves data leaking. Liu et al. [29]
proposed the hybrid model named EncodeORE, which
achieves acceptable security and appropriate ciphertext
length to reduce information leakage. Unfortunately, those
solutions depend on the security of the third party which
may be a potential risk point.

Some researchers employ the distributed ledger tech-
nique for log integrity protection. In [18], Andrew Sutton
et al. proposed a linked-data-based method, which utilizes
the distributed ledger technology to create tamper-proof
audit logs. Their solution provides proofs of log manipula-
tion and non-repudiation which are useful in data sharing
environments. In [19], Ashar Ahmad et al. presented Block-
Audit, a scalable and tamper-proof system that leverages
audit logs and security property of distributed ledger to
enable secure and trustworthy log integrity audit. In [17],
Jordi Cucurull et al. used an immutable log generation
method to ensure the integrity, authenticity, and non-repu-
diation of updated audit logs, and stored the integrity
proofs in Bitcoin’s blockchain. In [30], Gaurav Panwar et al.
presented an auditing framework, which leverages zero
knowledge proofs, Pedersen commitments, Merkle trees,
and public ledgers to create a scalable mechanism for audit-
ing electronic surveillance processes involving multiple
actors. However, these schemes directly store every log or
checksum to the distributed ledger which induces unafford-
able cost towards massive log data.

7.2 State Channel

Since the blockchain-based systems have the limitation on
throughput, which makes it hard to use them directly for
microtransactions, the state channel technology attracts
widespread attention as a solution. The payment channel,
which is a special sub-class of state channel, is first pro-
posed in [31]. Payment channel allows two users exchange
their money rapidly without sending every middle transac-
tion to the ledger. When the whole transactions are com-
pleted, users send the final result to the ledger, the ledger
only needs to process final transaction, which promotes the
throughput of blockchain-based systems. The whole trans-
action process only needs to interact with ledger when con-
structing channels and settlement. However, every time
users conduct microtransactions, they have to construct a
new payment channel, which takes a lot of time to initial
channel and settle results. Thus, researches mainly concerns
about related routing protocols [32], [33], channel rebalanc-
ing [34], and channel hubs [35]. The purpose of these studies
is to construct new appointed transaction route based on
existing state channels instead of construct a new payment
channel. These routing schemes need all nodes in each state
channel to participant interactions, which induces privacy
risk of transactions and high cost of intermediate nodes.
Then, researchers focus on the generalization of payment
channel and foundations of state channel [36]. Dziembowski
et al. [20], [37] proposed virtual state channel, which makes
the establishment of the state channel no longer need the

Fig. 14. Verification time in log integrity audit.

Fig. 15. Delays of voting mechanism.

3298 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

participation of all nodes in related state channels. Note
that, intermediate nodes do not participate execution after
the virtual state channel is established,, which can protect
the privacy of transaction details and reduce the cost of
themselves. This solution permits to build channels over
multiple state channels, but it still only supports two users
in one channel.

Multi-party state channel is the extension of traditional
two-party state channel. In [23], the researchers proposed a
multi-party scheme which is built on top of two-party state
channel. Their multi-party state channel scheme is more
suitable for scenarios related to virtual coin. However, due
to the complexity of off-chain communication protocol, their
scheme is difficult to be realized in our scenario. Compared
with their solution, our multi-party state channel scheme is
built on top of the original distributed ledger and easy to
implement. Moreover, our scheme is more efficient in the
process of pre-determining participants in the state channel.

8 CONCLUSION

In this paper, we propose a distributed efficient log integrity
audit framework, called DELIA. We adopt the distributed
ledger technique to protect the verification materials, and
utilize the idea of state channel to improve the throughput
of the distributed ledger system. To generate stable state
and provide mutual supervision in the domain, we propose
a log state generation scheme, called LSG. With the help of
LSG, rapidly-updated audit logs can be recorded in the state
channel. To solve the high latency challenge in existing
multi-party state channel schemes, we propose an hier-
archal efficient multi-party state channel scheme, called
HMSC. Then, the latency is dramatically reduced in amor-
tized analysis. Extensive experiments demonstrate that
DELIA is highly efficient in practice.

ACKNOWLEDGMENTS

This research was supported in part by the National Natural
Science Foundation of China under grants No. 61772383,
U1836202, 62076187; by the Joint fund of Ministry of
Education of China for Equipment Pre-research under grant
No. 6141A02033341.

REFERENCES

[1] Y. Kwon et al., “MCI : Modeling-based causality inference in audit
logging for attack investigation,” in Proc. Netw. Distrib. Sys. Secur.
Symp., 2018.

[2] Y. Liu et al., “Towards a timely causality analysis for enterprise
security,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2018.

[3] S. McClure, J. Scambray, G. Kurtz, and Kurtz, Hacking Exposed:
Network Security Secrets and Solutions. New York, NY, USA:
McGraw-Hill, 2009.

[4] T. M. Corporation, “Capec-268: Audit log manipulation.”
Accessed: Aug. 17, 2020. [Online]. Available: https://capec.mitre.
org/data/definitions/268.html

[5] The world’s most used penetration testing framework. Accessed:
Aug. 17, 2020. [Online]. Available: https://www.metasploit.com/

[6] Dark Laboratory, “A better generation of logcleaners.”
Accessed: Aug. 17, 2020. [Online]. Available:https://web.
archive.org/web/20070218231819/http://darklab.org/jot/
logcleanng/logcleaner-ng_1.0_lib.html

[7] S. Hales, “Last door log wiper.” Accessed: Aug. 17, 2020.
[Online]. Available: https://packetstormsecurity.com/files/118922/
LastDoor.tar

[8] K. Haniradi, “mig-logcleaner-resurrected.” Accessed: Aug. 17,
2020. [Online]. Available: https://github.com/Kabot/mig-
logcleaner-resurrected

[9] maldevel, “Clearlogs.” Accessed: Aug. 17, 2020. [Online]. Avail-
able: https://sourceforge.net/projects/clearlogs/

[10] Global incident response threat report. Accessed: Aug. 17, 2020.
[Online]. Available: https://www.carbonblack.com/resources/
tipping-point-election-covid-19-create-perfect-storm-
cyberattacks/

[11] Amazon. Accessed: Aug. 17, 2020. [Online]. Available: http://
chinaplus.cri.cn/news/china/9/20171112/51048.html

[12] Nintendo. Accessed: Aug. 17, 2020 [Online]. Available: https://
edition.cnn.com/2020/06/09/tech/nintendo-300000-accounts-
hacked/index.html

[13] G. Ateniese et al., “Provable data possession at untrusted stores,” in
Proc. 14th ACMConf. Comput. Commun. Secur., 2007, pp. 598–609.

[14] A. Juels and B. S. Kaliski Jr,“PORS: Proofs of retrievability for
large files,” in Proc. 14th ACM Conf. Comput. Commun. Secur., 2007,
pp. 584–597.

[15] K. He, J. Chen, Q. Yuan, S. Ji, D. He, and R. Du, “Dynamic group-
oriented provable data possession in the cloud,” IEEE Trans.
Dependable Secure Comput., vol. 18, no. 3, pp. 1394–1408, May/Jun.
2021.

[16] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
Accessed: Aug. 17, 2020. [Online]. Available: https://bitcoin.org/
bitcoin.pdf

[17] J. Cucurull and J. Puiggali, “Distributed immutabilization of
secure logs,” in Proc. Int. Workshop Secur. Trust Manage., 2016,
pp. 122–137.

[18] A. Sutton and R. Samavi, “Blockchain enabled privacy audit logs,”
in Proc. Int. Semantic Web Conf., 2017, pp. 645–660.

[19] A. Ahmad, M. Saad, M. Bassiouni, and A. Mohaisen, “Towards
blockchain-driven, secure and transparent audit logs,” in Proc.
15th EAI Int. Conf. Mobile Ubiquitous Syst. Comput. Netw. Serv.,
2018, pp. 443–448.

[20] S. Dziembowski, S. Faust, and K. Host�akov�a, “General state chan-
nel networks,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2018, pp. 949–966.

[21] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, 2014. Accessed: Aug. 17, 2020.
[Online]. Available: https://ethereum.github.io/yellowpaper/
paper.pdf

[22] J. Zhu et al., “Tools and benchmarks for automated log parsing,” in
Proc. 41st Int. Conf. Softw. Eng. Softw. Eng. Pract., 2019, pp. 121–130.

[23] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Host�akov�a,
“Multi-party virtual state channels,” in Proc. Annu. Int. Conf. The-
ory Appl. Cryptogr. Techn., 2019, pp. 625–656.

[24] F. Armknecht, J. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter,
“Outsourced proofs of retrievability,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2014, pp. 831–843.

[25] M. Hanling, G. Anthoine, J. Dumas, A. Maignan, C. Pernet, and
D. S. Roche, “Poster: Proofs of retrievability with low server
storage,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2019, pp. 2601–2603.

[26] Z. Liu, B. Li, Y. Huang, J. Li, Y. Xiang, and W. Pedrycz,
“NEWMCOS: Towards a practical multi-cloud oblivious storage
scheme,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 4, pp. 714–727,
Apr. 2020.

[27] X. Guo et al., “VERIFL: Communication-efficient and fast verifi-
able aggregation for federated learning,” IEEE Trans. Inf. Forensics
Secur., vol. 16, pp. 1736–1751, 2021.

[28] X. Liu, W. Sun, W. Lou, Q. Pei, and Y. Zhang, “One-tag checker:
Message-locked integrity auditing on encrypted cloud deduplica-
tion storage,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
2017, pp. 1–9.

[29] Z. Liu et al., “ENCODEORE: Reducing leakage and preserving prac-
ticality in order-revealing encryption,” IEEE Trans. Dependable Secure
Comput., early access, Oct. 9, 2020, doi: 10.1109/TDSC.2020.3029845.

[30] G. Panwar, R. Vishwanathan, S. Misra, and A. Bos, “SAMPL: Scal-
able auditability of monitoring processes using public ledgers,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2019,
pp. 2249–2266.

[31] R. Pass and A. Shelat, “Micropayments for decentralized
currencies,” in Proc. 22nd ACM SIGSAC Conf. Comput. Commun.
Secur., 2015, pp. 207–218.

[32] G. Malavolta, P. Moreno-Sanchez , A. Kate, and M. Maffei,
“Silentwhispers: Enforcing security and privacy in decentralized
credit networks,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2017.

CHEN ETAL.: DELIA: DISTRIBUTED EFFICIENT LOG INTEGRITYAUDIT BASED ON HIERARCHAL MULTI-PARTY STATE CHANNEL 3299

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

https://capec.mitre.org/data/definitions/268.html
https://capec.mitre.org/data/definitions/268.html
https://www.metasploit.com/
https://web.archive.org/web/20070218231819/http://darklab.org/jot/logcleanng/logcleaner-ng_1.0_lib.html
https://web.archive.org/web/20070218231819/http://darklab.org/jot/logcleanng/logcleaner-ng_1.0_lib.html
https://web.archive.org/web/20070218231819/http://darklab.org/jot/logcleanng/logcleaner-ng_1.0_lib.html
https://packetstormsecurity.com/files/118922/LastDoor.tar
https://packetstormsecurity.com/files/118922/LastDoor.tar
https://github.com/Kabot/mig-logcleaner-resurrected
https://github.com/Kabot/mig-logcleaner-resurrected
https://sourceforge.net/projects/clearlogs/
https://www.carbonblack.com/resources/tipping-point-election-covid-19-create-perfect-storm-cyberattacks/
https://www.carbonblack.com/resources/tipping-point-election-covid-19-create-perfect-storm-cyberattacks/
https://www.carbonblack.com/resources/tipping-point-election-covid-19-create-perfect-storm-cyberattacks/
http://chinaplus.cri.cn/news/china/9/20171112/51048.html
http://chinaplus.cri.cn/news/china/9/20171112/51048.html
https://edition.cnn.com/2020/06/09/tech/nintendo-300000-accounts-hacked/index.html
https://edition.cnn.com/2020/06/09/tech/nintendo-300000-accounts-hacked/index.html
https://edition.cnn.com/2020/06/09/tech/nintendo-300000-accounts-hacked/index.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
http://dx.doi.org/10.1109/TDSC.2020.3029845

[33] Anno, “Lightning-onion.” Accessed: Aug. 17, 2020. [Online]. Avail-
able: https://github.com/lightningnetwork/lightning-onion

[34] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain
payment networks,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2017, pp. 439–453.

[35] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Gold-
berg, “Tumblebit: An untrusted bitcoin-compatible anonymous
payment hub,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2017.

[36] Counterfactual. Accessed: Aug. 17, 2020. [Online]. Available:
https://www.counterfactual.com

[37] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun:
Virtual payment hubs over cryptocurrencies,” in Proc. IEEE Symp.
Secur. Privacy, 2019, pp. 106–123.

Jing Chen received the PhD degree in computer
science from the Huazhong University of Science
and Technology, Wuhan. Since 2015, he has
been a full professor with Wuhan University. He
has authored or coauthored more than 100
research papers in many international journals
and conferences, including the IEEE Transac-
tions on Dependable and Secure Computing,
IEEE Transactions on Information Forensics and
Security, IEEE Transactions on Mobile Comput-
ing, INFOCOM, IEEE Transactions on Com-

puters, and IEEE Transactions on Parallel and Distributed Systems. His
research focuses on computer science, especially in network security
and cloud security. He is currently a reviewer for many journals and con-
ferences, including the IEEE Transactions on Information Forensics,
IEEE Transactions on Computers, and IEEE/ACM Transactions on
Networking.

Xin Chen received the master’s degree in infor-
mation security from Wuhan University, Wuhan,
China, in 2020. His research interests include
blockchain and computer network.

Kun He received the PhD degree in computer
science from Computer School, Wuhan Univer-
sity. He is currently an associate professor with
Wuhan University. He has authored or coau-
thored more than 20 research papers in many
international journals and conferences, including
the IEEE Transactions on Computers, IEEE
Transactions on Dependable and Secure Com-
puting, IEEE Transactions on Mobile Computing,
IEEE Transactions on Parallel and Distributed
Systems, USENIX Security, and INFOCOM. His

research interests include cryptography, network security, mobile com-
puting, and cloud computing.

RuiyingDu received the BS,MS, and PhD degrees
in computer science from Wuhan University,
Wuhan, China, in 1987, 1994, and 2008, respec-
tively. She is currently a professor with the School of
Cyber Science and Engineering, Wuhan University.
She has authored or coauthored more than 80
research papers in many international journals and
conferences, including the IEEE Transactions on
Parallel and Distributed Systems, International
Journal of Parallel and Distributed Systems, INFO-
COM, SECON, TrustCom, and NSS. Her research

interests include network security, wireless network, cloud computing, and
mobile computing.

Yang Xiang (Fellow, IEEE) received the PhD
degree in computer science from Deakin Univer-
sity, Australia. He is currently a full professor and
the dean of digital research and innovation capa-
bility platform with the Swinburne University of
Technology, Australia. He is also leading the
Blockchain initiatives at Swinburne. Since the
past 20 years, he has authored or coauthored
more than 300 research papers in many interna-
tional journals and conferences. His research
interests include cyber security, which covers net-

work and system security, data analytics, distributed systems, and net-
working. He was an associate editor for the IEEE Transactions on
Computers and the IEEE Transactions on Parallel and Distributed Sys-
tems. He is currently the editor-in-chief of Springer Briefs on Cyber
Security Systems and Networks, an associate editor for IEEE Transac-
tions on Dependable and Secure Computing, IEEE Internet of Things
Journal, and the ACM Computing Surveys. He is the coordinator, of
Asia IEEE Computer Society Technical Committee on Distributed
Processing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3300 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Wuhan University. Downloaded on August 01,2023 at 11:37:59 UTC from IEEE Xplore. Restrictions apply.

https://github.com/lightningnetwork/lightning-onion
https://www.counterfactual.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

