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ABSTRACT To avoid the inconvenience of retyping a user’s ID and password, most mobile apps now
provide the automatic login feature for a better user experience. To this end, auto-login credential is stored
locally on the smartphone. However, such sensitive credential can be stolen by attackers and placed into
their smartphones via the well-known credential-clone attack. Then, attackers can imperceptibly log into
the victim’s account, which causes more devastating and covert losses than merely intercepting the user’s
password. In this article, we propose a generalized Android credential-clone attack, called data-clone attack.
By exploiting the new-found vulnerabilities of original equipment manufacturer (OEM)-made phone clone
apps, we design an identity theft method that overcomes the problem of incomplete credential extraction and
eliminates the requirement of root authority. To evade the consistency check of device-specific attributes in
apps, we design two environment customization methods for app-level and operating system (OS)-level,
respectively. Especially, we develop a transparent Android OS customization solution, named CloneDroid,
which simulates 101 special attributes of Android OS. We implement a prototype of CloneDroid and the
experimental results show that 172 out of 175 most-downloaded apps’ accounts can be jeopardized, such
as Facebook and WeChat. Moreover, our study has identified 18 confirmed zero-day vulnerabilities. Our
findings paint a cautionary tale for the security community that billions of accounts are potentially exposed
to Android OS customization-assisted data-clone attacks.

INDEX TERMS Automatic login, data-clone attack, identity theft, OS customization.

I. INTRODUCTION
Nowadays, most of the existing mobile apps support auto-
matic login mechanism [1]–[5], which reduces the hassle of
typing user ID and password in a small keyboard and thus
optimizes the users experiences. With such mechanism, even
if apps have been launched for an extensive time (e.g., half a
year) or phones have been restarted, users can still enjoy the
services smoothly (e.g., payment, video streaming services)
without re-authentication. For example, users can launch
the Tencent video app to watch the very important person
(VIP)-only movies without passwords or pay directly via
the Alipay app if the ‘‘Password-free Payment/Automatic
Deduction’’ function has been activated.

The automatic login mechanism depends on the login cre-
dentials, which is returned by the server and stored locally
when the users log into the accounts for the first time.
Researchers have confirmed that these private credentials can
be extracted from the victim’s phone and placed into the
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attacker’s phone. Then, the attacker can access the victim’s
account without knowing the victim’s ID and password. This
type of attack is called credential-clone attack [6]–[8]. Com-
pared with login the victim’s account with stolen ID and
password, the credential-clone attack is more stealthy since
it can evade many account protecting mechanisms, such as
login notification on new devices and device limitations.

Unfortunately, the previous work only tested a single-digit
number of apps to prove the existence of this type of attack,
and we were unable to reproduce their attack on most apps
in an extensive dataset. Their limitations are threefold. First,
those attacks require the attacker to obtain the root authority
and access private local storage on the victim’s device, which
is a relatively strong assumption on the attack capability.
Second, in addition to the files that save user credentials,
many auto-login functions also rely on different private files
under the directory of ‘‘/data/data/[app_name]/,’’ such as con-
figuration files. Therefore, only copying a single credential
file is not enough. Third, an increasing number of apps imple-
ment consistency check of device-specific attributes. More
specially, if they detect any device-specific discrepancies,
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they will disable the auto-login feature and switch to the
manual login pages.

In this article, we investigate the security risk caused by
mobile apps’ auto-login feature and propose a more gener-
alized attack strategy, called data-clone attack. For the apps
that do not implement a consistency check, we design a basic
attack scheme. To overcome the limitations of previous work
(i.e., the first and second limitations), we discover a new
data-clone attack vector—original equipment manufacturer
(OEM)-made phone clone apps [9], which support transfer-
ring private data in ‘‘/data’’ partition between two phones of
the same manufacturer. With this attack vector, the attacker
can steal the victim’s private data without obtaining root priv-
ileges. During the basic attack, we clone all of the data under
the directory of ‘‘/data/data/[app_name]/’’ into the attacker’s
device to bypass user authentication. In this way, the attacker
also avoids the trouble of locating the various particular
storage files that are associated with the auto-login function.

For the apps that implement a consistency check, we pro-
pose an advanced attack scheme based on the basic attack.
To overcome the third limitation of previous work, we first
design an automated tool to reverse test apps and extract
device attributes. Then, we determine 101 device attributes
based on the output of the automated tool and develop a
general app-level custom device attribute editing platform
using Xposed [10] technology. However, considering that
some critical apps (e.g., Wechat) can even fingerprint the
Android runtime hooking framework Xposed, we continue to
explore an Android operating system (OS)-level customiza-
tion solution, named CloneDroid. In the above-customized
environment, attackers can freely configure the phone to
match different victim phone profiles.

To assess Android apps’ susceptibility to our data clone
attacks, we conducted empirical research on the 175
most-downloaded apps from American and Chinese Android
app markets on Google Nexus 6P phone devices. The basic
attack can successfully bypass user authentication and uses
135 apps (e.g., Facebook, Snapchat, QQ, Weibo, Netflix,
and Prime Video) account authorization functions. For the
remaining 40 apps, we implemented the advanced attack, and
37 apps were successfully cloned into the customized envi-
ronment. More specifically, the Xposed-based customized
environment made 17 out of 37 apps successfully attacked;
CloneDroid made all 37 apps attacked successfully.

Experimental results verify that many mainstream apps
are vulnerable to data-clone attacks. Although some apps
have already checked the consistency of device footprints
to secure the auto-login function, however, these protec-
tion mechanisms are weak and cannot resist our data-clone
attacks. The results of comparative experiments using the
Xposed technology solution and the Android OS modifica-
tion solution verify that the OS-level customization environ-
ment is more transparent to clone apps. So it is difficult
for clone apps to detect device changes. We hope that our
work spurs discussion and inspires the security community
to redesign auto-login functions. Otherwise it leaves billions

of Android accounts vulnerable to Android operating sys-
tem customization-assisted data-clone attacks. In a nutshell,
we make the following three significant contributions:
• Our work presents a generalized procedure of Android
data-clone attack. This attack exploits the vulnerability
of the OEM-made phone clone apps, which can over-
come the problem of incomplete credential extraction
and eliminate root authority requirement.

• We develop two device-attribute editing platforms for
app-level and OS-level, respectively, to assist Android
data-clone attacks. Especially, the Android OS-level
customization solution, named CloneDroid, reveals a
strong resilience to various device-consistency checks.
Our in-depth study shows that realistic customization of
the victim’s smartphone is the key to launch a data-clone
attack successfully.

• Our work reveals the security risk of Android apps’
auto-login feature. A set of experiments on 175 most-
downloaded apps indicate that 98% of them are vul-
nerable to our proposed attack. Besides, 18 vendors
confirmed our zero-day vulnerability.

A. ETHICAL CONSIDERATIONS
We have made responsible disclosure to the app vendors that
are severely vulnerable to the data-clone attack. 18 vendors
have confirmed our report as vulnerability. Some of the main-
stream security vendors, for example, Netflix, Tencent, iQiyi,
Alibaba, Qihoo 360, Xiaomi, NetEase, etc. Our experiments
do not involve personally identifiable information or other
kinds of sensitive data.

II. BACKGROUND AND RELATED WORK
In this section, we first introduce the popularity of the
app automatic login mechanism and related knowledge. We
also discuss the automatic login security risk from android
apps and highlight that the existingworks are limited.We then
introduce OEM-made phone clone apps, which we take as
an attack vector to clone private data. At last, we introduce
related work on Android sandbox detection.

A. AUTOMATIC LOGIN MECHANISM OF APPS
Usually, due to Android’s small-scale touchscreen limiting
one app to running in a smartphone’s foreground, users fre-
quently switch to other apps in the background. Considering
these limitations of smartphone resources, if multiple apps
exist in the background for a long time, they may be killed
by the system or users to release resources. In this case, if the
user has to enter the ID and password every time they access
the app, it is very troublesome. In fact, most apps support
automatic login mechanism by default. As a result, users
only need to input their ID and password at their first login
time. After that, users can access the app smoothly without
retyping their ID and password. By killing the app process
to clear the app cache’s login status and then restarting the
app process, the app’s automatic login function is effective
once the app appears in the login status. We selected 175 apps
to check the automatic login function and found that 174 apps
are available.
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Most auto-login functions store user credential data locally
and use the credentials to build the subsequent authenticating
interactions with the server. User credentials are typically
stored either in the form of key-value pairs as SharedPref-
erences or structured data in an SQLite database. These data
are usually located in the ‘‘/data/data/[app_name]/’’ private
directory. In this case, the automatic login mechanism plays
an important role. That is, once the login credentials are
valid, the app has the opportunity to use the automatic login
mechanism to restore the login status.

B. AUTO-LOGIN MECHANISM SECURITY RISKS AND
LIMITATIONS OF EXISTING WORK
User credential data are always an attractive target for cyber-
criminals [11], [12]. Suppose cybercriminals steal the target
app’s login credentials on the victim’s device and push them
under their phone’s same directory. In that case, the target
app on the cybercriminals’ device can automatically login
to the victims’ accounts without knowing their ID and pass-
word. That means cybercriminals can leverage the auto-login
mechanism to bypass the authentication from the server-
side. As a result, the user’s sensitive data will be in jeop-
ardy without raising suspicion. Recent work has discussed
such security risk [6]–[8] and proposed a ‘‘user credential
cloning attack’’ to exploit the pervasive auto-login feature
in Android apps. These studies are based on some common
assumptions. For example, the victim’s device is rooted, and
the attacker can physically access the victim’s phone or use
malware installed on the victim’s machine to steal credential
data. A large number of potentially harmful applications will
use privilege escalation vulnerabilities to root devices for
different attack purposes [13], [14]. These papers [6]–[8]
showed the feasibility of data-clone attack with only six apps.
However, after testing with 175 most-downloaded apps in
October 2019, we only reproduce their proposed attack on
less than 11% apps. Upon further investigation, we locate two
major limitations that lead to the remaining failure cases.

Limitation 1: only cloning user credential data. The
previous approaches [6]–[8] first identify the location of
the storage file that saves user credentials. Then they clone
that storage file to the same directory of a target device.
However, in addition to user credentials, more than 70% of
our tested apps’ auto-login functions also depend on various
files under the folder of ‘‘/data/data/[app_name]/.’’ We take
WeChat, a social media app with over 1 billion daily active
users [15], as a case study. WeChat stores AES-encrypted
user credentials in a SQLite database file ‘‘EnMicroMsg.db.’’
This file is under the directory of ‘‘/data/data/MicroMsg/
[xxxx. . . xxxx]/,’’ in which ‘‘xxxx. . . xxxx’’ is the 32-bit
md5 value of a file name. We reverse-engineer WeChat’s
auto-login function and find that it relies on multiple files
under the same directory and a system configuration file,
‘‘/data/data/MicroMsg/systemInfo.cfg.’’ ‘‘systemInfo.cfg’’ is
anXMLplaintext containing the connection informationwith
the app server. Apparently, only cloning ‘‘EnMicroMsg.db’’
is not enough at all. Note that the exact files that are needed

by the auto-login function vary on a case-by-case basis.
Therefore, the best strategy is to clone all of the data under
‘‘/data/data/[app_name]/.’’

Limitation 2: unaware of device-consistency checks.
We still take WeChat as an example to explain the second
limitation of existing work [6]–[8]. We cloned all of the
data under ‘‘/data/data/MicroMsg/’’ from one smartphone to
another smartphone, but we found that WeChat pops up the
login interface on another device and asks us to retype ID
and password. The root cause of this failed result is that
WeChat can detect changes in the smartphone environment,
and then terminate the automatic login process. We reversed
WeChat and found thatWeChat has detectedmany device fin-
gerprints, such as phone number, international mobile equip-
ment identity (IMEI), and Bluetooth address. In our dataset,
a total of 37 apps such as Chrome, Apple Music, KakaoTalk,
and PayPal also conduct a similar detection when invok-
ing their auto-login functions. However, no previous work
[6]–[8] further researched device-consistency checks and
even realized that automatic login would be protected by
device consistency.

Compared to the measures that can address Limitation 1,
overcoming Limitation 2 will be much more challenging.
Bianchi et al. [16] describe a scheme to bypass app authen-
tication by simulating device-public information. However,
their login credentials are stored in publicly accessible
locations that any apps running on a device can access
(i.e., Google authentication). Thus, they are studying dif-
ferent types of app authentication from ours. In our tested
175 most-downloaded apps, no app adopts such an authenti-
cation scheme, including WhatsApp and Viber. Besides, they
use the Xposed framework [10] to create a custom environ-
ment to simulate device-public information[10]. However,
the hook traces of their scheme are easily detected by the
test apps, and the number of device attributes they simu-
late is only 7. We have extended their Xposed framework
scheme and proposed an OS-level device-attribute editing
platform that is transparent and can edit nearly ten times
more device attributes. CloneDroid has broad applications
that rely on a customized phone environment, such as analyz-
ing trigger-based malware [17], [18] developed for a specific
phone model.

C. OEM-MADE PHONE CLONE APPS
Our proposed new attack utilizes OEM-made phone clone
apps to address Limitation 1. OEM-made phone clone
apps [9] automatically transfer data (e.g., photos, music,
apps, and contacts) and even locally-stored app-private data
from one device to another one. Based on these advantages,
OEM-made phone clone apps are becoming increasingly
popular among users and phone manufacturers. Their user
downloads have even exceeded 100 million times, and many
well-known Android phone manufacturers (e.g., Samsung,
ONEPLUS, OPPO, Huawei, Xiaomi) [19] have also made
their own phone clone tools (e.g., OnePlus Switch, Huawei
Phone Clone, and Xiaomi Mi Mover).
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FIGURE 1. OEM-made phone clone app.

These OEM-made phone clone apps have a unique advan-
tage: they have the privilege to call Android backup appli-
cation programming interface (API) [20] on the same OEM
phones. Therefore, they can access app-private data in ‘‘/data’
partition and transfer them between the same OEM phones
without rooting devices. This advantage brings users great
convenience when they upgrade their devices. Fig. 1 illus-
trates an example of OEM-made phone clone app. It sets up
a Wi-Fi hotspot to transfer data including ‘‘/data’’ partition
from the old phone to the new phone. Therefore, the new
smartphone just becomes the replica of the old device, and
the user can still access the apps without retyping their ID
and password.

D. DETECTING ANDROID SANDBOX ENVIRONMENT
Another line of research related to our work is Android
sandbox environment detection, which is related to our
work on Limitation 2. The sandboxes based on full-system
emulation provide an isolated dynamic malware analysis
environment. However, a challenge of full-system emula-
tion is to realistically simulate various hardware and device
effects [21]. Therefore, related work [22]–[26] has summa-
rized a set of detection heuristics to find the hardware-related
discrepancies caused by full-system emulation. For example,
Bordoni et al. [25] find that the return values of sensor-related
APIs are different betweenmobile emulators and real devices.
In contrast, our custom environment design can directly
access hardware devices at any time. Another kind of
sandboxes is built on app-virtualization techniques such as
Xposed [10] and VirtualApp [27]. The host app creates a vir-
tual machine like environment, which is able to run multiple
copies of the same apps (i.e., guest apps) [28]–[30]. However,
the host app has to heavily rely on hooking mechanism to
deceive both Android system services and guest apps, which
leaves many host app’s signatures in the guest app’s call stack
and memory [29]. Our CloneDroid’s device customization
and configuration do not adopt hooking mechanism and thus
have better transparency than app-virtualization techniques.

III. BASIC ATTACK
To address Limitation 1 of the previous work, we
define a ‘‘data-clone attack’’ as the attack that clones
‘‘/data/data/[app_name]/’’ into the device of an attacker to
bypass user authentication. In this section, we propose the
detailed design of the basic attack scheme, and analyze two
types of case studies: 1) victim identity theft, and 2) break

FIGURE 2. WeChat’s warning notification.

through the paying-subscriber limit.We reveal that data-clone
attacks are a real threat to both the app revenues and user
privacy.

A. DATA-CLONE ATTACK’S ADVANTAGE
Our work exploits pervasive auto-login functions to bypass
user authentication. Compared with login the victim’s
account with stolen ID and password, our data-clone attack
is stealthy since it can evade many accounts protecting mech-
anisms. For instance, logging in by entering the user ID and
password triggers the login device identity restriction. Many
apps limit the number of logins on the phone simultane-
ously with the same account. Once the limit is exceeded,
the app will notify the user whether to allow login on the
current device. For example, WeChat only allows a single
user to log in from one mobile device at a time. When an
attacker logs into WeChat from a different phone by typing
the victim’s ID and password, the victim’s phone will receive
a warning notification as shown in Fig. 2. However, our
key observation is that multiple auto-login attempts of the
app from the same device will not affect server counting
the number of login devices, which leaves us a backdoor to
eliminate the login-device number limit. Thus, our data-clone
attack can make the attacker login to the victim’s account
and send no notifications to the victim, so it will not arouse
the victim’s suspicion. Suppose a messaging app (e.g., What-
sApp) is compromised in this way. In that case, the adversary
can not only view or modify the victim’s account information
(e.g., address book, email) but also impersonate the victim to
send messages, which may harm the privacy of victims and
reputation of the company’s products.

B. DATA-CLONE ATTACK MODEL
In this article, we build a data-clone attack model based on
formal methods. To the best of our knowledge, we are the first
to perform formal analysis on data-clone attack on a mobile
platform. This model includes the attack vector (Av), attack
hypothesis (Ah), attack object (Ao), attack conditions (Ac),
and attack result (R). Formally describe our attack model as
follows.

Av + Ah + Ao
Ac
−→ R (1)

In (1), this model expresses that under Ah and Ac, the adver-
sary attacks Ao through Av and then produces R. In this
model, R represents the attack model’s result. As a result,

199736 VOLUME 8, 2020



W. Song et al.: Android Data-Clone Attack via OS Customization

FIGURE 3. Data-clone attack model: data-clone attack steals user credentials to access victim’s accounts automatically.

the attackers can hijack the victim’s data and push the data to
his device. Ao is a representation of an attack object app. Ac
represents the attack scenario’s occurrence condition where
the victim uses an OEM-made phone clone app to migrate
the Ao between the same manufacturer.
Ah defines the restrictions under which the attacker

performs the above attack as follows.

Ah
def
= ∃Vp

∧
Aa (2)

In (2), this model explains what Ah is. Ah consists of
the constraints on the victim’s phone system (Vp) as well
as limitations on the ability of the adversary’s ability (Aa).
When Aa satisfies the attack requirement, and there is a Vp
scenario, this model can produce Ah’s result. We assume that
Vp is a trusted environment without root and does not contain
any vulnerabilities. We limit Aa cannot physically access or
inject malware into the Vp to clone Ao’s automatic login data.
Besides, Aa do not have access to servers, so the adversary
cannot modify server-side logic.
Av represents theOEM-made phone clone app vulnerability

used by attackers to launch attacks as follows.

Av−→∃precondition
∧

Am (3)

In (3), Av is effective if precondition is occurring and there is
an OEM made phone clone app vulnerability. precondition
indicates there is a scenario where the victim is using the
OEM-made phone clone app to transfer Ao data between two
samemanufacturer phones.Am representsAa can successfully
find vulnerabilities (weak passwords, plaintext transmission,
etc.) in the OEM-made phone clone app to intercept private
user data. Then, we use a case study to demonstrate that
attackers can use this attack model to intercept user private
data and push the data to their device.

This vulnerability from a top OEM-made phone clone
app involves two design flaws: weak password and plaintext
transmission. First, the app sets up aWi-Fi hotspot to transfer
data, but the Wi-Fi password is just the first eight alphanu-
meric characters of the Wi-Fi hotspot service set identifier
(SSID)’s MD5 value. Therefore, as long as an attacker’s
device can detect the Wi-Fi hotspot signal, he can easily
calculate the password and access the wireless local area
network (WLAN). Second, this phone clone app transfers
data in plaintext, which causes the attacker to intercept user
private data by applying address resolution protocol (ARP)
spoofing [31] or packet sniffing [32]. As a result, when a
victim is cloning phone data in some places, it is very likely
that an adversary performs a man-in-the-middle (MITM)
attack but without raising suspicion. Fig. 3 illustrates how
we exploit this vulnerability for the purpose of data-clone
attack. After we get into the WLAN via the weak password,
we send spoofed ARP messages to associate our phone’s
media access control (MAC) address with the internet proto-
col (IP) address of the victim’s new phone, so that the traffic
meant for the victim’s new phone will be redirected to our
phone. We intercept ‘‘/data/data/[app_name]/’’ and put them
in our phone to bypass user authentication. Note that this
vulnerability exists in all versions of this OEM-made phone
clone app, which are across nine years. The app vendor, one
of the top-three Android phone manufacturer has confirmed
our finding as a high-severity vulnerability and assigned a
common vulnerabilities and exposures (CVE)-2019-15843.

C. CASE STUDY
1) VICTIM IDENTITY THEFT
App user identity is used by the server to distinguish different
users. The app relies on a specific user identity to request
the server’s response to access an account authorization page.
Once the user enters the page, he can browse a large amount

VOLUME 8, 2020 199737



W. Song et al.: Android Data-Clone Attack via OS Customization

of user privacy information. Currently, a large number of
apps rely on users identities to perform various critical tasks.
Typical examples include editing personal information and
sending chat messages, such as WhatsApp, Facebook, and
QQ. Using the attack model in Fig. 3 can break the access
control from the victim’s identity and pretend to be the victim
using the app to interact with the server continuously. For
example, the attacker used this attack model to steal the login
credential file of WhatsApp, then push the data to his mobile
phone to restore the login status, and found that it does not
affect the victim’s use of WhatsApp functions. WhatsApp
only allows a single phone to log in at a time. However, our
data-clone attack model can break this limitation.

2) BREAK THROUGH THE PAYING-SUBSCRIBER LIMIT
Breakthrough the paying-subscriber limit is another app func-
tion damage after victim identity theft caused by data-clone
attacks. The subscription-based app economy thrives in
mobile markets, and customers have acclimated to the idea of
regular payments for a better service [33]. Typical examples
are the apps that provide video and music streaming services,
such as Netflix, Amazon Prime Video, and iQiyi. For a
subscription-based app, only a paying subscriber can enjoy its
premium service, and it also enforces the maximum number
of the same user’s login from different devices at a time. For
example, Netflix’s premium plan allows at most four screens
a user can watch on at the same time. However, our data-clone
attack can break the paying subscriber limit. Fig. 3 illustrates
such an example, and eventually, the attacker can access
Android premium apps in his devices without payments.
Although Fig. 3 just shows a single-user attacker case, once
attack model is turning into full-fledged, coordinated attacks
in Android black market, malicious actors can infringe the
revenue model of subscription-based apps, resulting in a
great financial loss to software vendors. Most of the zero-day
vulnerabilities that we found belong to this category, and the
leading app vendors such as Netflix, Xiaomi, and Alibaba,
have confirmed our findings.

IV. ADVANCED ATTACK WITH CUSTOM ENVIRONMENT
In this section, we introduce the advanced attack, which
continues the attack model of hijacking private data in §III.
The difference is that these private data are not directly put
into the victim’s real machine, but into the customized envi-
ronment that matches the attributes of the victim’s device.
Next, we will introduce the custom environment in detail, and
this can address the Limitation 2. Our custom environment
design attempts to achieve two design goals: 1) our design
ensures that Android emulator detection heuristics are in vain
for our platform; 2) the custom environment in the attacker’s
device should be imperceptible to cloned apps. In order to
achieve the first goal, we design customized solutions that
run on real machines to counter the emulator fingerprint
detection of the apps. Then, we elaborate on how we achieve
our second design goal—evading device-consistency checks
so that cloned apps are unaware of the change of device.

A. OVERVIEW
In order to counter the device consistency check in the
apps, we conducted a shallow and profound analysis of
the app’s environmental detection capabilities, respectively.
The shallow means that the app only checks the changes
in device-specific attributes. The profound analysis not only
checks the consistency of the device but also detects hook
fingerprints.

Most apps detect different device attributes. To cover
as many attributes as possible, we attempt to collect data
from various sources: 1) android open-source project (AOSP)
code, 2) the existing commercial Android sandbox detection
tool, and 3) our automated reverse engineering of the apps
that perform device-consistency checks. We use python lan-
guage and embed the apktool library to build an automatic
attribute extraction tool. This tool automates the reverse test
apps and extracts the device attribute data. Tab. 1 shows the
distribution of editing device attributes that contain eight cat-
egories, with up to 101 attributes. Thus, these custom device
attributes are comprehensive. Besides, the device attributes
are all present in the tested mainstream apps, so the collected
device attributes are practical.

Using the above attribute information, we have imple-
mented two custom environments to support data-clone
attacks bypass device-consistency checks. One is built by
usingmainstreamXposed technology, and the other is created
directly by modifying the AOSP code. Considering that the
AOSP code is open and easy to download [34], we have
modified them to avoid app detection of hooks. Although
there are many ways to hide the traditional hook technology,
it is difficult to conceal all hook points with the constant game
of attack and protection.

B. ADVANCED ATTACK WITH XPOSED-BASED CUSTOM
ENVIRONMENT
Xposed is an advanced Android runtime hooking frame-
work [10], and can provide an app-virtualization environ-
ment, in which a user can customize many device attributes
such as central processing unit (CPU) model, SSID, MAC
address, phone number, and IMEI. The underlying mecha-
nism of Xposed is performing API hooking to return fake
device attributes and thus deceive guest apps (apps running
in the sandbox environment virtualized by hook technology).
Android device-attribute editing tools such as XxsqManager,
iGrimace, and NZT can achieve this goal, and all of them
are Xposed-based sandboxes. Fig. 4 shows the configuration
page of an Android device-attribute editing tool, and users
can input new parameters that are different from the current
physical device’s profiles to simulate a new phone’s runtime
environment.

The number of device attributes contained in the exist-
ing commercial Xposed environment is not comprehensive
enough. Besides, the Android system provides developers
with multiple interfaces to obtain an object. In order to
prevent the app from bypassing our hook points, we try
to hook more specific attributes from multiple objects.
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TABLE 1. Customizable device-attribute options and numbers.

FIGURE 4. Configuring device-specific attributes in a Xposed-based
sandbox.

Our hook objects include system APIs, fields, and files. The
modification of the ‘‘System Property’’ in the Tab. 1 is
mainly implemented by hooking the ‘‘value’’ correspond-
ing to the ‘‘filename’’ of the ‘‘Build.class’’ by ‘‘Xposed-
Helpers.setStaticObjectField.’’ The ‘‘CPU’’ attributes are
customized through file redirection, and other attributes are
customized by the hook system APIs. Finally, we can use
Xposed to provide customization for 101 device attributes.

However, app-virtualization technique is not completely
transparent to guest apps [29]. For example, The hooking
mechanism adopted by Xposed leaves identifiable finger-
prints in package name, call stack, suspicious native meth-
ods, and shared objects loaded into memory [35]. Besides,
installingXposed framework requires rooting device.We find
some cloned apps (e.g., Chrome, Alipay, and Apple Music)

can detect the existence of Xposed or root, and thus prevent
data-clone attacks. In what follows, we explore a realistic
customization environment by leveraging Android OS code
modification technology.

C. ADVANCED ATTACK WITH OS-LEVEL CUSTOM
ENVIRONMENT
We have developed an OS-level custom environment, named
CloneDroid. With CloneDroid, attackers are free to config-
ure different device settings according to the victim phone’s
attributes. Our design ensures that Android emulator and
app-virtual detection heuristics are in vain for CloneDroid
and cloned apps are almost unaware of device changes.

In order to achieve these goals, our customization is mainly
based on the native and kernel system functions. From bottom
to top, the Android system’s startup sequence is the kernel,
native framework, java framework, and application layer, and
the last three parts belong to the user space of the Android
system. The user space generates a soft interrupt by issuing a
system call to the kernel space, thereby causing the program
to fall into the kernel state and perform corresponding opera-
tions. The user apps have no permission to operate the system
call for entering the kernel space. Although, the native frame-
work provides a ‘‘jni interface’’ that can be called directly by
the app. Once we modify these interfaces, the value returned
to the app is still our modified value. Therefore, it is reason-
able for CloneDroid to focus on native and kernel layers to
modify. Tab. 2 reveals the information about the customized
location.

Fig. 5 shows theworkflow of CloneDroid. CloneDroid pro-
vide a configuration file ‘‘build.clonedroid.prop’’ in advance.
CloneDevice app in Fig. 5 is used to edit device properties
by users, and these property values will eventually be filled
into ‘‘build.clonedroid.prop.’’ The device property changes
will take effect after the system reboots, and CloneDroid
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FIGURE 5. CloneDroid users provide device-specific attributes in ‘‘build.clonedroid.prop’’ configuration file. The system’s
customization happens either in the kernel drivers or the Native code.

TABLE 2. Information of customizable location for data-clone attacks
with phone device.

will load the properties into the custom function to wait for
the app to access. In practice, the ‘‘build.clonedroid.prop’’
stores device-specific attributes in the form of key-value
pairs. We classify key-value pairs in it into two cate-
gories: native-layer device properties and kernel-layer device
properties. They have different customization methods.

1) ANDROID NATIVE LAYER ATTRIBUTES CUSTOMIZATION
Tab. 2 reveals the customization of the ‘‘System Prop-
erty,’’ ‘‘Bluetooth,’’ ‘‘GPS,’’ ‘‘Telephony,’’ ‘‘Display,’’ and
‘‘GPU’’ attributes occur in the native layer of theAndroid sys-
tem. Our system function modification includes two items:
(1) adding user identifier (UID) condition judgment to filter
the current user app; (2) whenmatching the current UID to the
user app, execute the ‘‘Customization Function’’, the return
value of this function is the custom device data, otherwise
execute the normal flow of the original system function.

Here, we take the customize ‘‘System Property’’ as an
example to describe the native layer design of CloneDroid.
Android system properties are const values that describe the
configuration information of the mobile device, including
brand, serial number, device tags, etc. They are stored in the
shared memory of the init process. Other processes enquire
about Android system properties at run time by calling ‘‘prop-
erty_get,’’ an API for native code to read the data in the shared
memory space from other processes. We modify the spe-
cific implementation of ‘‘property_get’’ in the system source
code. When the phone is started, the customization data is
loaded by the customization function. Once the user app calls
the ‘‘property_get,’’ the function will first determine whether
the current query request is from the user app by checking the
current user UID. If yes, it calls ‘‘Customization Function’’
to get the customized data from ‘‘build.clonedroid.prop’’ and
then returns the fake data to the user app. we did not add the
hook code snippet, which reduces the largescale hiding work
in order not to expose the hook trace.

2) ANDROID KERNEL LAYER ATTRIBUTES CUSTOMIZATION
Tab. 2 reveals the customization of the ‘‘Kernel ver-
sion,’’ ‘‘Memory,’’ ‘‘CPU,’’ and ‘‘Network’’ attributes occur
in the kernel layer of the Android system. Since the kernel
directly interacts with the hardware, once the modification
is inappropriate, it will cause the device to crash. Therefore,
we filter the applicable objects of the kernel operation after
customization. Only when the current user UID is app user,
the customization modification will take effect. In addition
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to the two custom items in §IV-C1, we need to customize
the system call function. The customized data in the system
native layer has no privilege to enter the kernel space. One
way for these customized data to take effect is to recompile
the CloneDroid source code and perform the flashing process.
However, if these processes are executed every time update
the mobile phone environment, it will make the customiza-
tion time too cumbersome and inefficient. To overcome this
obstacle, we create a new system call to copy data from the
userspace to the kernel space. Our customization functions
in the kernel drives work in a similar style. For example,
we customize the CPU-related profiles (e.g., CPU Serial
Number, CPU Version) in the kernel proc driver and use the
user UID to determine whether the query request is from the
user app or system. If the request is from the user app, it will
call our created syscall to extract customized data. Otherwise,
the normal system flow will be executed.

3) THE ADVANTAGES OF CloneDroid CUSTOMIZATION
Compared with the app-level customization solution, our
OS-level customization solution revels distinct advantages.
First, our custom method is highly concealed. Our tool
does not rely on any user-level hooking mechanism, which
means that the user app can not identify custom envi-
ronments through commonly used hook detection technol-
ogy. Second, CloneDroid offers vast and reliable Android
device-attribute editing options. We now provide 101 device
configuration options, which span a wide spectrum of device
attributes. More importantly, CloneDroid performs reliable
custom operations on the native layer and the kernel layer
of the Android system, which makes it difficult for the user
app to bypass our customization point. As a result, the Clone-
Droid ensures the user app’s consistency to obtain the device
attribute value from the system context.

V. EVALUATION
We evaluate the effectiveness of the data-clone attack by
cloning the intercepted private data to the attacker’s real
machine environment, Xposed-based custom environment,
and CloneDroid environment and checking the status of
the app that restored the login state. The first environment
is mainly used to analyze the effectiveness of our basic
data-clone attack. The latter two situations focus on the device
consistency check features of the app, and CloneDroid is also
used to evaluate the app’s ability to check the hook sandbox.

We test our proposed data-clone attacks with 175
most-downloaded apps. We crawled the top 300 ranked
Android apps from audio, social, and financial categories on
Huawei App Market, Xiaomi App Market, and Google Play,
with more than one million downloads. In order to make the
crawled data set categories names consistent with our attack
object types, we did not directly follow the app category name
of the application market. The crawled data are reclassified
into new types of social media, payment, subscription. Their
distributions are shown in Tab. 3, which shows the examples
of these compromised apps.

TABLE 3. Total number of test apps and distribution of categories.

TABLE 4. The number of successes when performing data-clone attacks.
Xposed-based sandbox and CloneDroid have been configured to match
the victim phone’s profiles.

A. BASIC ATTACK
We follow the style of Fig. 3 to intercept auto-login
depended on data, and then push the intercepted data to
the attacker’s real device. As a result, the third column
of Tab. 4 lists the number of successes when performing
data-clone attacks with real devices, which shows the effec-
tiveness of our attack model. We can automatically log into
135 out of 175 apps, including 71 social media apps, 43 pay-
ment/shopping apps, and 21 subscription apps. The second
column of Tab. 3 shows the examples of these compromised
apps, including prominent apps that have been downloaded
for more than one billion times (e.g, Facebook, QQ, and Sina
Weibo). These apps contain a large amount of user’s pri-
vate information. Once stolen, they will cause some problem
(e.g., fake accounts, fake post messages, etc.) to dis-
rupt the healthy life of users. Most importantly, some
subscription-based apps break through the paying-subscriber
limit during the data-clone attack model.

For the remaining 40 failed cases, when we run them in
the new device, they exhibit one of the following responses:
1) the app terminates and exits; 2) the app requests the user
to type ID and password again. Many apps also pop up a new
window showing that the app is running on a different device.
We surmise that these apps have already detected the change
of device and thus disabled the automatic login. To confirm
our conjecture, we conduct a separate experiment to clone
these apps to an Xposed-based sandbox.

B. ADVANCED ATTACK WITH XPOSED-BASED
CUSTOMIZATION ENVIRONMENT
In our new experiment, we install an Xposed-based sandbox
on our phone (Redmi Note 4x). This sandbox provides 101
device configuration options and we change them to the
same profiles with our old phone (Xiaomi Redmi Note 4).
In our study, we assume the attacker knows the target device’s
attributes. Such information can be inferred through social
engineering [36], but it is out of our paper’s scope.

The ‘‘Xposed’’ column of Tab. 4 shows the num-
ber of successes when performing data-clone attacks with
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TABLE 5. The successful cases that are newly added when performing
data-clone attacks in Xposed-based sandbox.

an Xposed-based sandbox. Compared to the experiment
with real devices, we have 17 compromised apps that
are newly added in the app-virtualization environment
(see Table 5). Our new experiment confirms that some apps
have already secured their auto-login functions by checking
device-specific attributes, but their detections can be cheated
by app-virtualization technique.

The remaining 23 cases failed to recover the app status in
the Xposed-based environment, which shows that some apps
may not only detect the consistency of device attributes. One
of the directions that can be further evaluated is whether the
hook fingerprint is considered abnormal by the app, so we
clone the app data to the OS-level custom environment for
in-depth evaluation.

C. ADVANCED ATTACK WITH OS-LEVEL CUSTOMIZATION
ENVIRONMENT
The OS-level customization environment we propose is
CloneDroid. Currently, CloneDroid is compatible with
Android 8.0. The CloneDroid images are created and config-
ured on a PC and downloaded to the host device via USB. We
provide a CloneDevice app for users to edit device attributes.
This app is related to configuration file, which includes
device attributes and values. When the users want to update
the mobile phone environment, they edit the device attributes
values in the CloneDevice app, and these attributes valueswill
eventually be filled in the configuration file. Once the user
restarts the mobile phone, the system will load the config-
uration file information to the corresponding customization
point, thereby completing the update of the mobile phone
device environment.

We evaluate CloneDroid from two dimensions. The
First experiment demonstrates that CloneDroid substan-
tially increase the success rate of data-clone attacks. Sec-
ond, we provide performance measurements to show that
CloneDroid reveals native performance.

1) DEVICE-CONSISTENCY CHECK
We repeat our data-clone attacks with most-downloaded apps
in CloneDroid. In particular, we take Google Nexus 6P con-
figure the CloneDroid environment as Xiaomi Redmi Note 4,
Redmi Note 4x, Huawei Honor 6x, and Honor 8, respectively.
These four phone environments represent four victim devices,
and we provide four different device-attribute configuration
files for CloneDroid to load. The result is that we can achieve
the login status of our cloned apps in each mobile cus-
tomized environment. The last column of Tab. 4 shows the
success number of data-clone attacks in CloneDroid: we can

TABLE 6. The app examples that are only vulnerable to data-clone
attacks in CloneDroid.

compromise as many as 172 most popular apps’ accounts.
Compared with the attacks on a real device, CloneDroid
wins by additional 37 apps; among them, 20 apps can detect
Xposed-based sandbox but fail to detect CloneDroid. Tab. 6
shows the apps that are only vulnerable to data-clone attacks
in CloneDroid. An identity theft example for the messaging
app KakaoTalk are shown in Fig. 6, and it also demonstrates
the unique benefit of our approach. KakaoTalk represents
the apps that are only vulnerable to data-clone attacks in
CloneDroid (see Tab. 6). As long as the legal user is online,
the attacker cannot log into KakaoTalk by typing the same
user’s ID and password. Furthermore, KakaoTalk also dis-
ables the automatic login after we copy the data in the direc-
tory of ‘‘/data/data/KakaoTalk/’’ to a new device. In contrast,
the data-clone attack via CloneDroid enables the victim and
the attacker to be online simultaneously, and the victim is not
aware that her account has been compromised.

The rest of the three failed data-clone attacks in Clone-
Droid is from banking apps and social media. Upon fur-
ther investigation of banking apps, the root cause is they
do not store auto-login depended data locally in databases
or shared preferences. Instead, they put auto-login depended
data in memory. The banking apps take a conservative solu-
tion: they store auto-login depended data temporarily in their
own process memory for better isolation. This type sacri-
fices usability and are not well suited for social media and
subscription-based apps, because users have to retype their ID
and password if they restart the app. Another type (adopted
by Youtube, Skype, etc) presents a possible countermeasure
to data-clone attacks. Note that for some social media apps
that rely on Android ‘‘AccountManager’’ APIs to manage the
auto-login function (e.g., Youtube, Skype), our attacks failed
at first. The reason is ‘‘AccountManager’’ stores auto-login
depended data under the directory of ‘‘/data/system_xx/’’
rather than ‘‘/data/data/[app_name]/’’. After we copy the
‘‘/data/system_xx/’’ folder to the virtual phone in our second
try-out, our data-clone attacks succeeded.

2) PERFORMANCE MEASUREMENTS
The modification of the Android system may cause a loss of
system performance. In order to prove that our customization
does not cause too serious load on the device, we test the
runtime overhead and memory consumption of CloneDroid.
We measure performance using Google Nexus 6P phones
(ARM Cortex-A53, Adreno 430 GPU, 3G RAM, and 32G
ROM). Our runtime overhead measurement contains two
scenarios. The first one is running a set of benchmark apps
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FIGURE 6. Login status of Kakaotalk account under normal conditions and data-clone attacks conditions.

FIGURE 7. CloneDroid’s performance measurements. ‘‘Quadr.’’ is short for ‘‘Quadrant.’’ (a) Normalized Nexus 6p results, (b) Normalized Nexus 6p
+ music results, (c) Normalized Nexus 6p memory usage in MB.

on CloneDroid’s and a native phone, respectively. Native
phone refers to a phone running Google Android source code
without anymodification. The second one is running the same
benchmark apps on the CloneDroid and the native phone, but
simultaneously with an additional background music player
workload. All results are normalized against the performance
of running the same benchmark apps on the latest manufac-
turer stock image available for Google Nexus 6P, but without
the background workload. Each benchmark app is designed
to stress some aspect of the system performance: Linpack
(v1.1) for CPU; Quadrant advanced edition (v2.1.1) for 2D
graphics and file I/O; 3DMark (v2.0.4646) for 3D graphics;
SunSpider (v1.0.2) for web browsing; and networking using
BusyBox wget (v1.21.1) to download a single 500M video
file through a PC’s Wi-Fi hotspot.

Fig. 7 shows the normalized runtime overhead and mem-
ory usage on the Nexus 6P phones. Compared to Native
phone, CloneDroid reveals the same level of variability in
measurement results. The deviations between ‘‘CloneDroid’’
and ‘‘Native Phone’’ appear in Quadrant I/O, SunSpider, and

network in Fig. 7a) and Fig. 7b). Quadrant I/O and SunSpider
will consume CPU performance during the testing process.
These additional loads are mainly caused by the interaction
of the customized information of the CloneDroid device, but
the negligible deviations indicate no user-noticeable perfor-
mance difference between running in CloneDroid and run-
ning natively on the phone. The network’s difference cannot
be attributed entirely to the customized load, because the
speed of the network and the blocking of the surrounding
obstacles will cause delay to the network.

As shown in Fig. 7c), the increase in thememory difference
between CloneDroid and Native phone mainly comes from
the first ‘‘No APPs’’ scenario. This scenario describes the
memory occupied by the phone’s pure system startup. Since
CloneDroid starts, it needs to read the configuration file
of the device properties and fill it into the memory of the
corresponding custom point for the user app to call. It exceeds
the memory consumption of 40M than the Native Phone,
which is tolerable for Android Mobile phones. The mem-
ory usage of most apps now exceeds 100M. In ‘‘Browser’’
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and ‘‘Browser+Email+calender’’ scenes, Native phones and
CloneDroid’s memory growth rate are almost the same, and
these memory growth groups come from the user app’s own
memory consumption. On the whole, although we have cus-
tomized most of the system, but it does not have a big impact
on the consumption of system memory.

a: VENDOR REACTION
In total, we received responses from 18 vendors that con-
firmed vulnerabilities. Among them, seven app vulnerabili-
ties confirmed from the china national vulnerability database
(CNVD) [37] platform, and the remaining vulnerabilities of
the apps were confirmed from the vulnerability submission
platform or the reply email of the manufacturer. Vendors
such as Alibaba, Tencent, and iQiyi have labeled our find-
ings as high/middle-severity vulnerabilities. We speculate
that vendors are more susceptible to paying-subscriber fraud.
For example, iQiyi, an online video app with more than
100 million users, has labeled our report as a high-severity
vulnerability and added device-consistency checks in the
new release version. However, we have evaluated the latest
version of iQiyi in CloneDroid and found that CloneDroid
can still bypass the newly added device-consistency checks.
Netflix confirms our vulnerability finding, and they treat it
as a ‘‘Single-User Fraud’’ threat. We confirm that with the
latest version of Netflix (Netflix 7.52.0), our data-clone attack
without CloneDroid still succeeds.

VI. MITIGATION DISCUSSION
Related work [6]–[8] has provided several methods to mit-
igate data-clone attacks. For example, user credential data
are bound to a specific device, increasing the search time of
locating user credential data, and asking users for additional
PIN input whenever an automatic login occurs. However,
these mitigation methods either can be evaded by Clone-
Droid, or are too cumbersome in practice. The most funda-
mental method against data-clone attacks is that a mobile
app never stores auto-login depended data in local files.
One direction is, like our tested banking apps, to store
auto-login depended data temporarily in the app’s process
memory. However, this strategy, at the cost of sacrificing
usability, only works for critical apps that do not require
frequent user interactions. Another direction is to leverage
ARMTrustZone to encrypt/decrypt auto-login depended data
before use. As the decryption key is stored in the Trustzone
environment, data-clone attacks cannot copy the decryption
key to another device together with the encrypted auto-login
depended data, and therefore the server will fail to verify the
login credentials. The recent papers, TruApp paper [38] and
IM-Visor [39] explore the feasibility of protectingApp integrity
and sensitive data with TrustZone.

A natural response to breaking through the login-device
number limit is to monitor concurrent sessions at the
app server side. Unfortunately, the variable nature of mobile
devices (e.g., the switch of Wi-Fi hotspot and cellular data)
makes it difficult to determine an adequate number of con-
current sessions. The previous work [7] has pointed out that,

although many apps do not permit duplicate logins from
different devices, they do allow multiple session requests
from the same device ID. Our evaluation also confirms that
most apps allow maintaining two or more connections per
user. As the login from CloneDroid shows a different IP
address from the victim’s IP, a possible countermeasure is to
detect multiple concurrent IPs at the server-side. However,
this strategy cannot completely thwart data-clone apps. For
quite several apps, such as the Facebook app we tested, they
do allow multiple logins from different devices.

We do not assume that evading CloneDroid is strictly
impossible, but it can prohibitively increase the cost. Clone-
Droid now provides 101 device configuration options, but we
cannot guarantee that our list is complete. The arms race here
is that the auto-login function could check the consistency
of some obscure device properties, and finding all of them
is an open problem. Our CloneDroid is susceptible to the
new update and replacement of hardware devices in future
Android versions. In addition, the development of Clone-
Droid is based on a specific Android version and cannot be
extended to multiple Android versions. In the future, we plan
to expand CloneDroid so that it can be flexibly transplanted
into multiple Android versions in the form of firmware.

VII. CONCLUSION
In this article, we present a data-clone attack based on the vul-
nerability of an OEM-phone clone app. This attack addresses
some of the limitations of the previous work and can bypass
most apps’ user authentication. Besides, we also propose
an advanced attack that can break the device consistency
check of almost all tested apps. Especially, the advanced
attack scheme with an OS-level custom environment is more
transparent to cloned apps, making most apps insensitive
to environmental changes. It reveals a strong resilience to
various device-consistency checks within the clone apps. Our
systematic study with most-downloaded apps demonstrates
that the data-clone attack has been swept under the carpet
for a long time, and our proposed attack is an imminent
threat. We hope our study can help the community redesign
the auto-login feature and improve the runtime environment
checking capability.
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